이 문서는 R 언어에 대한 소개자료로서 평가(evaluation), 구문 분석(parsing), 객체 지향 프로그래밍 (objective oriented programming), R 언어 상에서의 컴퓨팅 (computing) 등과 같은 내용을 설명하고 있습니다.
This manual is for R, version (3.3.0).
Copyright © 2000–2014 R Core Team
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.
R은 통계적 계산과 그래픽을 위한 시스템입니다. R이 제공하는 것들은 여러 가지가 있지만 그 중에서도 프로그래밍 언어, 고수준의 그래픽스, 다른 언어와의 인터페이스, 그리고 디버깅 기능들을 제공합니다. 이 매뉴얼에서는 R 언어에 대해서 상세히 기술하고 이를 정의합니다.
R 언어는, 1980년대에 설계된 이후로 통계학 커뮤니티 내에서 널리 사용되어 온 S라는 언어로부터 파생되었습니다. 이 S 언어의 주 설계자인 존 챔버스 (John M. Chambers)는 1998 ACM Software Systems Awards을 수상한 바 있습니다.
R 언어의 문법(syntax)은 겉으로 보기에는 C 언어와 유사하지만, 의미 구조(semantics)는 Lisp와 APL과 같은 언어들과 상당한 유사성을 가진 기능적 프로그래밍 언어(FPL; functional programming language)의 일종입니다. 특히, R 언어에서는 표현식(expression)을 입력으로서 받아들이는 함수를 작성하는 것이 가능하게 해주는 “computing on the language (랭귀지를 이용한 컴퓨팅)”이 가능합니다. 이는 종종 통계 모델링(statistical modelling)과 그래픽에 유용합니다.
커맨드 라인 상에서 단순 표현식(simple expressions)을 대화식으로 R을 사용하는 것만으로도 상당한 것들을 할 수 있습니다. 일부 사용자들은 그러한 수준을 넘어갈 필요가 없겠지만, 어떤 사용자들은 반복적인 작업을 시스템화하거나 새로운 기능을 담은 애드온(add-on) 패키지를 작성하는 관점에서 사용자 자신만의 함수들을 만들고 싶어 할 것입니다.
이 매뉴얼의 목적은 R 언어 그 자체를 문서화하는 것입니다. 즉, R 언어가 동작하는 객체들 그리고 표현식 평가 과정의 세부사항들과 같이 알고 있으면 R 함수를 프로그래밍 할 때 유용한 내용들을 담고 있습니다. 그래픽과 같은 특정 작업을 위한 주요 하부 시스템은 이 매뉴얼에서는 간략히 소개만 되고 별도 문서로 만들어질 것입니다.
이 문서의 많은 내용들이 S에도 동일하게 적용됩니다. 그러나, 몇 가지 중요한 차이점도 존재하기 때문에 혼란을 일으키지 않도록 R을 설명하는 데에만 집중할 것입니다.
설계된 디자인은 여러가지 좋은 점들도 있지만 사용자를 놀라게 할 수도 있는 위험요소들도 있습니다. 이러한 것들의 대부분은 언어를 좀 더 깊은 수준에서의 일관성 때문에 존재하는 것으로 이들에 대해서는 나중에 설명하도록 하겠습니다. 꽤 복잡한 연산들을 간결하게 표현해 줄 수 있는 손 쉬운 방법들(shortcuts)과 특정한 방법(idioms)들이 있습니다. 이러한 것들의 대부분은 근본적인 개념들에 익숙해 진다면 사용에 있어 자연스러워 질 것입니다. 어떤 경우에는 하나의 작업을 수행하는 여러 가지 방법이 있는데, 이들 중 몇 가지는 랭귀지 구현에 의존하는 것이고 또 다른 몇 가지는 상위단계 추상화로부터 비롯되는 것입니다. 그러한 경우에는 선호되는 사용법을 명시하도록 할 것입니다.
독자들은 이미 어느 정도 R에 익숙하다고 가정한 상태에서 문서가 작성되었습니다. 이 문서는 R에 대한 소개서라고 하기 보다는 프로그래머의 레퍼런스 매뉴얼입니다. 추가적으로 필요한 내용들에 대해서는 다른 문서를 참고 해주시길 바랍니다. Preface in An Introduction to R은 R에 대한 소개가 잘 되어 있으며, System and foreign language interfaces in Writing R Extensions은 컴파일된 코드를 이용하여 R을 어떻게 확장하는지에 대하여 상세히 설명되어 있습니다.
In every computer language 모든 컴퓨터 언어에서 변수(variable)는 메모리에 저장된 데이터에 접근하는 수단을 제공합니다. R은 컴퓨터 메모리에 직접적인 접근을 제공하지 않지만, 대신 여러가지 특수화되어 있는 데이터 구조를 제공하며, 우리는 이들을 객체(object)라고 합니다. 이러한 객체들은 심볼 (symbol) 또는 변수를 통해 참조될 수 있습니다. 그러나, R에서는 심볼은 그 자체로서 객체이기도 하므로 다른 객체들과 동일한 방식으로 조작 할 수 있습니다. 이 점이 다른 컴퓨터 언어와 다른 점이며, R 프로그래밍에 있어 광범위하게 영향을 미칩니다.
이번 챕터에서 우리는 R에서 제공되는 다양한 자료구조(data structure)에 대해 간략히 설명합니다. 이들에 대한 많은
부분들을 아래에서 설명되는 챕터들을 통하여 알 수 있을 것입니다. R은 R 객체의 유형(type of R
object)을 알려주는 typeof
이라는 함수를 가지고 있습니다.
R의 밑바탕을 이루고 있는 C 코드에서 모든 객체들은 SEXPREC
이라는 불리는 typedef 자료형으로 된
구조체(structure)를 가리키는 포인터(pointer)들입니다. R의 여러 가지 데이터 형(data types)들은
구조체(structure)의 다양한 부분에 어떻게 정보가 사용되는가를 결정해주는 SEXPTYPE
에 의해서 C코드로
표현됩니다.
아래의 표에서 typeof
함수에 의해 반환되는 값들과 그 값들이 무엇인지를 정리하였습니다.
사용자는 ‘***’로 표시된 유형의 객체들을 쉽게 찾을 수 없습니다.
함수 mode
는 Becker, Chambers & Wilks (1988)에서 설명된 객체의 모드(mode)에 대한
정보를 알려줍니다. 그리고 이는 S 언어를 이용하여 구현된 것들과 더 잘 호환됩니다.
마지막으로, 함수 storage.mode
는 Becker et al. (1988)에서 설명된 입력인자의
저장모드(storage mode)를 알려줍니다. 이 함수는 보통 C 또는 FORTRAN 과 같은 다른 언어로 작성된 함수를
호출할때 R 객체들이 호출되어진 루틴에 의하여 입력되어지기를 기대되는 자료형(data type)을 가지고 있는지 확인하기 위하여
사용됩니다. (S 언어에서는 정수 또는 실수를 가지는 벡터는 모두 "numeric"
모드를 가지기 때문에 저장모드가
구분될 필요가 있습니다).
> x <- 1:3 > typeof(x) [1] "integer" > mode(x) [1] "numeric" > storage.mode(x) [1] "integer"
R R객체들은 연산이 수행되는 도중에 종종 다른 유형(type)으로 강제변환(coercion)이 이루어지기도 합니다. 또한, 명시적으로 강제변환을 수행하는 많은 함수들이 있습니다. R을 이용한 프로그래밍에서 객체의 유형 (또는 종류)는 일반적으로 연산(의 결과)에 영향을 미치지 않습니다. 그러나, 외부언어(foreign languages) 또는 운영체제를 함께 다룰 때에는 종종 객체가 올바른 유형을 가지고 있는지 확인하는 것이 필요합니다.
벡터들은 데이터를 포함하고 있는 인접한 셀들과 같이 생각될 수 있습니다.셀들은 x[5]
와 같이 인덱싱 조작(indexing
operation)을 통하여 접근 되어집니다.
더 자세한 사항은 Indexing에 설명되어 있습니다.
R은 여섯 가지의 기본 (‘atomic’, 아토믹) 벡터를 가지고 있습니다. 이들은 논리형(logical), 정수형(integer), 실수형(real), 복소수형(complex), 문자열 (string) 또는 문자 (character), 그리고 원형(raw)입니다. 다음의 표는 유형이 다른 벡터들의 모드와 저장모드들을 정리하였습니다.
typeof mode storage.mode logical
logical
logical
integer
numeric
integer
double
numeric
double
complex
complex
complex
character
character
character
raw
raw
raw
4.2
와 같은 하나의 숫자와 "four point two"
와 같은 문자열도 길이가 1인 벡터입니다. 이외의 다른
기본유형은 없습니다. 길이가 0인 벡터 또한 가능하며 (유용합니다).
문자열 벡터들은 둘 다 "character"
(문자형) 모드와 저장모드를 가집니다. 문자형 벡터의 구성요소 하나를 종종
character string(문자형 문자열)라고도 합니다.
리스트 (“generic vectors”)는 데이터 저장(data storage)의 또 다른 종류입니다. 리스트들의 구성요소는 어떠한 유형의 R 객체들이 될 수 있습니다. 즉, 리스트의 구성요소들은 같은 유형일 필요가 없습니다.리스트의 구성요소들은 세가지 다른 인덱싱 조작(indexing operation)에 의하여 접근되어 집니다. 자세한 사항은 Indexing에 설명되어 있습니다
리스트도 벡터의 종류이긴 하지만, 리스트 유형을 제외한 기본 벡터의 종류들을 atomic vectors(벡터를 구성하는데 있어 더 이상 하위단계로 분류할 수 최소의 기본구성단위 요소만으로 된 벡터 – 아토믹 벡터)라고 합니다.
R 언어는 세가지의 객체들로 구성되어 있습니다. 이들은 calls, expressions, 그리고
names입니다.
R은 "expression"
이라는 유형의 객체들을 가지고 있기 때문에 우리는 expression이라는 단어를 다른
의미로 사용하지 않으려고 노력할 것입니다. 특히 구문상으로 올바른 expression을 statements라고 지칭할
것입니다.
이러한 객체들은 "call"
, "expression"
, 그리고 "name"
라는 모드를 가지고
있습니다.
이들은 quote
매커니즘 (즉, 따옴표와 함께 사용하여)을 이용하여 expressions 로부터 바로 생성되고,
as.list
와 as.call
함수들에 의하여 리스트에서 리스트로 서로 전환될 수 있습니다.
Components of the
구문트리(parse tree)의 구성요소(component)들은 표준 인덱싱 조작(standard indexing operations)을
이용하여 얻어질 수 있습니다.
Symbols refer to R
objects. The
심볼 (symbols)들은 R 객체들을 지칭합니다. 모든 R 객체의 이름은 일반적으로 심볼입니다. 심볼들은 함수
as.name
과 quote
을 통하여 생성되어질 수 있습니다.
심볼들은 "name"
이라는 모드, "symbol"
이라는 저장모드, 그리고 "symbol"
이라는
유형을 가지게 됩니다.
이들은 as.character
와 as.name
을 이용하여 문자열로 강제변환될 수 있습니다.
이들은 구문분석된 표현의 기본단위(atoms of parsed expressions)으로 나타나게 됩니다. 예를들어 보기 위하여,
as.list(quote(x+y))
를 입력해 보시길 바랍니다.
R에서는 "expression"
이라는 객체의 유형을 가질 수 있습니다. expression은 한 개 또는
그 이상의 statement를 포함합니다. statement는 구문상 올바른 토큰(token)들의 모음(collection)입니다.
tokens.
다른 점은 expression 객체들은 여러개의 그런 expression들을 포함할 수 있다는 것입니다. 또 다른 미묘한 차이점은
"expression"
유형의 객체들은 오로지 eval
에 명시적으로 넘겨졌을 때에만 평가되어지는
반면, 다른 랭귀지 객체들은 일부 예상하지 못한 경우에도 평가될 수도 있습니다.
An expression 객체는 리스트(list)와 매우 흡사하게 작동하며, 이들의 구성요소들은 리스의 구성요소에 접근하는 방법으로 접근되어집니다.
R에서 함수(function)은 객체(object)이며, 다른 종류의 객체들과 꽤 많이 비슷한 방법으로 다루어질 수 있습니다. 함수 (또는 보다 정교하게 말하면 펀션 클로우져 – function closure)는 세가지 구성요소를 가지고 있습니다. 이들은 형식인자 목록(formal argument list), 본체(body), 그리고 인바이런먼트 (enviroment)입니다. 인자 목록은 컴마로 분리된 입력인자들의 목록입니다. 인자는 심볼(symbol) 또는 ‘symbol = default’라는 구성체(construct), 또는 ‘...’이라는 특수인자가 될 수 있습니다. 여기에서 두번째에 사용된 형식은 인자에 기본값을 부여하는데 사용됩니다. 만약 이 값은 인자에 어떠한 값도 지정되지 않은 상태로 함수가 호출되었을때 사용될 것입니다. ‘...’ 인자는 특별하며, 입력받는 인자의 개수에 제한을 받지 않습니다. 이는 주로 인자의 개수를 정확히 모를 때 사용하거나, 다른 함수에 전달될 함수의 인자들이 존재할 경우에 사용됩니다.
함수의 본체(body)는 구문이 분석된 R 문장 (parsed R statement)입니다. 이는 일반적으로 중괄호(brace)안에 놓인 문장들의 집합체이지만, 한개의 문장, 한개의 심볼 또는 심지어 한 개의 상수(constant) 일 수도 있습니다.
A function’s 함수의 인바이런먼트(environment)는 함수가 생성되었을 당시 그 시점에 활성화 되어 있는 장소(environment)를 의미합니다. 해당 인바이런트와 함께 묶여 있는 모든 심볼들을 파일화 (captured)하게 되어 함수에서 사용할 수 있습니다. 함수의 코드와 인바이런먼트 내의 바인딩의 이러한 조합을 펀션 클로우져(‘function closure’)라고 합니다. 이 용어는 ‘functional programming theory’로 부터 나온것입니다. 이 문서내에서 우리는 일반적으로 ‘함수’(function)라고 사용할 것이지만, 함께 부착된 인바이런먼트 (attached environment)의 중요성을 강조하고자 할 때에는 ‘클로져’(closure)를 사용할 것입니다.
formals
(형식인자들), body
(본체), environment
(인바이런먼트)라는
구성체(construct)들을 이용하여 클로져 객체(closure object)의 세부분을 추출하고 조작을 할 수 있습니다 (세가지 모든
것은 할당문의 좌변에 사용될 수 있습니다).
assignments).
이것들중의 마지막 구성체는 원하지 않았던 인바이런먼트가 파일하였던 것을 제거하는데 사용할 수 있습니다.
함수가 호출되었을대, evaluation environment(이밸류에이션 인바이런먼트)라고 불리는 새로운 인바이런먼트가 생성됩니다. 이 인바이런먼트의 인클로져(enclosure)는 함수의 클로져(function closure)로부터 나온 인바이런먼트입니다 (Environment objects를 살펴보시길 바랍니다). 처음에 이 새로운 인바이런먼트는 평가가 아직 되지 않은 함수의 인자들로 이루어져 있습니다. 그러나, 평가(evaluation)이 진행됨에 따라서, 지역변수(local variables)들이 이 인바이런먼트내에서 생성되게 됩니다.
as.list
와 as.function
을 이용하여 함수와 리스트 구조체가 서로 전환할 수 있는 기능이
있습니다.
이러한 것들은 S와의 호환성을 제공하나, 이들의 사용은 추천되지 않습니다.
NULL이라고 불리우는 특별한 객체가 있습니다.이것은 객체의 부재를 나타내거나 명시해야할 필요가 있을 때 사용되게 됩니다. 그러나, 이것은 길이가 0인 벡터 또는 리스트와 혼돈해서는 안됩니다.
NULL
객체는 이를 나타내는 유형(type)이 없으면 수정할 수 있는 속성들을 가지고 있지 않습니다. R에서는 이러한
객체들을 나타내는데 있어 오로지 하나의 NULL
객체가 있을 뿐입니다. 객체가 NULL
인지 확인하기 위해서는
is.null
을 이용하세요. NULL
객체에 속성(attributes)를 부여할 수 없습니다.
These two kinds of object contain the builtin
이러한 두 종류의 객체는 R의 내장함수(builtin function)를 가지고 있습니다.즉, 코드가 보여질 때 (code
listings) .Primitive
와 같이 보여지는 것들을 말합니다. (또한 .Internal
함수를 통하여
접근되어지는 것들을 말하는데, 이 객체들은 사용자가 볼 수 없습니다).이 두가지 종류의 객체 사이에는 인자처리(argumnet
handling)방법이 다릅니다.내장함수들은 call-by-value에 따라서 인자들이 평가되어 내부 함수(internal
function)로 전달되는 반면에 특수함수(special function)들은 평가되지 않은 인자들을 내부함수로 전달합니다.
R 언어에서는 이러한 객체들은 단지 또다른 종류의 함수일뿐입니다. is.primitive
함수는 인터프리티드된
함수들로부터 이들을 구별해 낼 수 있습니다.
functions.
프라미스 객체들(promise objects)는 R의 지연연산방법(lazy evaluation mechanism)의 부분입니다.이들은 세 부분으로 되어 있습니다: 값(value), 표현식(expression), 그리고 환경 (environment)입니다. environment. When a 함수가 호출될때 인자들은 짝지어진 후, 각각의 형식인자들은 프라미스(promise)와 결합하게 됩니다. 형식인자들을 위해 주어진 표현식과 함수를 호출되어진 환경(environment)에 대한 포인터들은 프라미스에 저장됩니다.
해당 인자에 접근되어질 때 까지, 프라미스(promise)와 연관된 값은 존재하지 않습니다.
인자가 접근되어질 때, 저장된 표현(expression)이 저장된 환경(environment)내에서 평가되어지고, 그 결과가
반환됩니다. 이 결과는 또한 프라미스에 의하여 저장되어집니다. substitute
함수는 익스프레이션 슬롯
(expression slot)의 내용을 뽑아낼 것입니다. 이것은 프로그래머가 프라미스와 연관된 표현 또는 값에 접근하도록 해주는
것입니다.
R 언어에서는 프라미스 객체들은 거의 직접적으로 보여지지 않지만 실제적인 함수의 인자들은 이러한 종류에 해당합니다. 또한,
프라미스를 익스프레이션(expression) 밖으로 꺼내주는 delayedAssign
함수가 있습니다. R 코드내에서
객체가 프라미스인지 아닌지를 확인하는 방법이 없으며, 또한 프라미스의 환경을 정하기 위하여 R 코드를 사용하는 방법 또한
없습니다.
‘...’ 객체유형은 패어리스트(pairlist)라는 유형으로 저장됩니다. ‘...’의 구성요소들은 C 코드에서의 일반적인 패어리스트 방법으로 접근할 수 있습니다. 그러나, 인터프리티드된 코드내에 있는 객체처럼 쉽게 접근되지는 않습니다. 아래의 예제에서 보이는 것과 같이 객체는 리스트로서로 캡쳐할 수 있습니다.
args <- list(...) ## .... for (a in args) { ## ....
만약 함수가 ...
를 형식인자로 가지게 된다면, ‘...’는 형식인자와 일치하지 않은 어떠한 실제적인 인자들과도
일치하지 않습니다.
인바이런먼트(environment)는 두 가지로 구성되어 있다고 생각할 수 있습니다. 심볼(symbol)과 값(value)들이 짝으로
이루어져 있는 프레임(frame)과 인클로징 인바이런먼트(enclosing environment)에 대한
포인터(pointer)인 인클로저(enclosure)입니다. R이 심볼에 대한 값을 찾고자 할때 프레임이 검사되며 만약
일치하는 심볼을 찾게 된다면 이것의 값을 반환하게 됩니다. 만약 그렇지 않다면 인클로징 인바이런먼트에 접근된 후에 이 과정을 반복하게
됩니다. 인바이런먼트는 인클로져들의 부모 역할을 하는 트리 구조(tree structure)로 되어 있습니다. 인바이런먼트들로 되어
있는 트리는 부모(parent)가 없는 비어있는 인바이런먼트(empty environment)로부터 시작되며
emptyenv()
를 통하여 사용가능합니다.
이는 base 패키지의 환경에 대한 직접적인 부모이며 (baseenv()
함수를 통하여 이용할 수 있습니다).
2.4.0 이전에는 baseenv()
는 NULL
이라는 특별한 값을 가지고 있었으나, 이후부터는 환경에
NULL
은 더 이상 사용되지 않습니다.
환경(environment)이라는 것은 Function objects와 Lexical environment에 설명된
것과 같이 함수호출에 의하여 직접적으로 생성되지 않을 수도 있습니다. 이 경우 환경은 인자들을 포함하여 함수에 국한적인 변수들을 포함하게
되며, 이것의 인클로져(enclosure)는 현재 호출된 함수의 환경입니다. 환경들은 아마도 new.env
를 이용하여
직접적으로 생성될 수도 있습니다.
함수의 프레임내에 있는 내용들은 ls
, get
, assign
, eval
, 그리고
evalq
에 의하여 접근되고 조작되어질 수 있습니다.
parent.env
함수는 환경의 인클로져에 접근하기 위해서 사용될 수 있습니다.
대부분의 R 객체들과는 다르게 환경들은 함수에 전달되어지거나 할당에 사용이 될 때 복사되어지지 않습니다. 따라서, 만약 같은 환경을 여러개의 심볼에 할당하거나 이를 변경한다면 다른 것들이 함께 변경되게 됩니다. 특히, 환경에 속성을 부여하는 것은 예상치 못한 결과를 가져오기도 합니다.
Pairlist object들은 Lisp의 dotted-pair 목록들과 비슷합니다. 그들은 R의 내부에서 광범위하게 쓰여지지만, 그들이 formals에 의해 return되고 (예를들어) pairlist function에 의해 생성될 수도 있음에도 불구하고, 변환된 코드에서는 드물게 보여집니다. Lisp에서 예상되는 것 처럼 길이가 0인 pairlist는 NULL이지만 길이가 0인 목록과는 반대입니다. 각각의 object들은 CAR 값, CDR값과 TAG값의 세 개의 자리가 있습니다. TAG 값은 text string이고 CAR과 CDR는 순서대로 보통 나타내는 list item (head)과 목록의 NULL object를 terminator처럼 가지고있는 목록의 remainder (tail)입니다 (CAR/CDR 용어는 전통적인 Lisp이고 처음으로 address를 나타냈고 60년대 초반 IBM 컴퓨터에서 감소가 되었습니다???).
Pairlist들은 포괄적인 벡터들 ("lists")와 똑같은 방법으로 R 언어에서 다루어 집니다. 특히, element들은 같은[[]] syntax를 사용하여 접근됩니다. 내부의 pairlist가 R에서부터 접근되었을때, 이는 일반적으로 (subset이 되었을때를 포함) 포괄적인 벡터로 전환됩니다.
아주 드문 경우들로 pairlist들이 user-visible합니다: 한 개의 예는 .Options입니다.
Object가 “Any” 의 종류가 되는 것은 거의 가능하지 않지만, 그럼에도 불구하고 이는 유효한 type 값입니다. 이는 예를들어 type coercion이 되지 않아야함을 나타내주는 as.vector(x, "any")와 같은 특정한 상황들에 사용됩니다 (매우 드물게). coercion should not be done.
NULL을 제외한 모든 object들은 그들에게 부여된 하나 이상의 attribute들을 가질 수 있습니다. Attribute들은 모든
element들이 이름지어진 곳에 pairlist처럼 저장되지만, name=value pair들의 세트처럼 생각되어야만
합니다. attribute들의 목록은 attributes를 사용하여 얻을 수 있고 attributes<-에 의해 설정됩니다. 각각의
구성요소들은 attr와 attr<-를 사용하여 접근됩니다.
individual components are accessed using attr
and attr<-
.
Some attributes have special accessor 몇몇의 attribute들은 (예를들어 factor들을 위한 levels<-) 특별한 accessor function들을 가지고있고 이들은 사용가능할 때만 사용되어야만 합니다. 실행의 숨겨진 디테일에 추가적으로, 그들은 추가적인operation들을 실행할 지도 모릅니다. R은 특별한 attribute을 포함하고 일관적인 확인들을 강요하는 attr<-와 attributes<-로의 call들을 가로채려고 시도합니다.
행렬들과 열들은 간단하게말해서 dim attribute를 가진 벡터들이고 옵션적으로 dimnames가 벡터에 부여되어있습니다.
Attribute들은 R에 사용된 class structure을 이행하하기위해 사용되었습니다. 만약 object가 class attribute를 가지고 있다면 그 attribute는 평가 도중 검토될 것입니다. R의 class structure은 Object-oriented programming에 자세하게 설명되어있습니다.
Names 속성은, 존재할 때, 벡터나 목록의 각각의 요소들에 label을 합니다. Object가 존재하는 names의 속성을 프린트하려고 할 때, 요소들을 label하기위하여 쓰여집니다. Names 속성은 예를들어quantile(x)["25%"]와 같은 indexing 목적으로도 쓰여질 수 있습니다.
names와 names<- 구성들을 사용하여 name들을 얻거나 설정할 수도 있습니다. 뒷쪽 것 (names<-)은 names 속성이 적합한 타입과 길이를 가지고있는지를 확실히 하기 위해 필요한 일관적인 체크를 수행할 것입니다.
Pairlist들과 일차원 행들은 특별하게 대해집니다. Pairlist object들에는, 가상의 names 속성이 사용되어집니다; names 속성은 사실상 목록 구성요소들의 태그에서부터 구성됩니다. 일차원 행들에서 names 속성은 실제로dimnames[[1]]에 접근합니다.
dim 속성은 행들을 이행하기위하여 쓰여집니다. 행의 내용은 열방향순서의 벡터안에 저장되고, 그 dim 속성은 각각의 행의 규모를 명시하는 정수의 벡터입니다. R은 벡터의 길이가dimension 길이의 산출물임을 확실하게 합니다. 하나 이상의 dimension의 길이가 0일 수도 있습니다.
벡터는 dim 속성이 없는 반면, 일차원 행은 길이가 1인 dim 속성을 가지고 있기때문에, 일차원 행과 같지 않습니다.
행은 문자 벡터의 목록인 dimnames 속성을 사용하여 각각의 dimension을 따로 이름지을 수도 있습니다. dimnames 목록이 자기 자신의 이름을 가지고 있을 수 있으며, 그러면 이는 행들을 프린트 할 때 extent heading들로 쓰여집니다.
R은class 속성을 통해 주로 컨트롤되는 정교한 class 시스테을 가지고 있습니다. 이 속성은object가 inherit하는 곳의 class들의 목록을 포함하고있는 문자 벡터입니다. 이 형태들은 R의 “일반적인 방법을” 기능의 기초를 형성합니다.
이 속성은 사용자에의한 제한 없이도 가상적으로 접근되고 조작될 수 있습니다. 여기에는 object가 class 방법들이 예상하는 구성요소들을 확실히 포함하고 있는지를 확인하는 것이 없습니다. 그러므로 class 속성을 대신하는 것은 조심해서 해야만하며, 이들이 사용 가능할 때는 구체적인 창출과 강제 function들이 선호되어야만합니다.
tsp 속성은 시계열 분석, 시작, 끝, 그리고 빈도의 매개변수를 붙잡고 있기위해 사용됩니다. 이 구성은 월간 혹은 분기별 데이터처럼 주기적인 하부구조를 가진 series들을 다루기위해 주로 사용됩니다.
Object가 변경되었을 때 속성이 복사가 되어야만 하는지 아닌지는 복잡한 영역이지만, 몇몇의 일반적인 규칙들이 있습니다(Becker, Chambers & Wilks, 1988, pp. 144–6).
Scalar function들 (벡터에서 요소에서 요소로 실행하고 output이 input과 비슷한)은 속성들을 보존해야만 합니다 (class는 제외할 수도 있습니다).
2항 연산은 보통 더 긴 argument에서부터의 대부분의 속성들을 복사합니다 (그리고 만약 그들이 두 개 모두에서부터 같은 길이라면, 처음의 값을 선호합니다). 여기에서 ‘대부분’은 operator의 코드에의해 알맞게 설정된 names, dim, 그리고 dimnames를 제외한 모든 것 이라는 뜻입니다.
(빈 index에 의한 것을 제외한) subsetting은 일반적으로 알맞게 reset되는 names, dim, 그리고 dimnames를 제외한 모든 속성을 drop합니다. 반면에, subassignment는 일반적으로 길이가 바뀌더라도 속성을 보존합니다. Coercion은 모든 속성을 drop합니다.
Sorting의 기본 방법은 object와 마찬가지로 구분/정렬되는 names를 제외한 모든 속성들을 drop하는 것입니다.
Factor들은 유한 값들을 가질 수 있는 아이템들 (성별, 사회계층 등)을 설명하기위하여 사용됩니다. Factor는 levels 속성과 “factor” class를 가집니다. 선택적으로, factor이 modeling function들에 사용되었을 때 사용된 parametrisation을 조정하기위한 contrasts 속성도 포함하고 있을 수 있습니다. modeling functions.
Factor는 순수하게 명목상이거나 순차적인 카테고리일 수도 있습니다. 순차적인 카테고리일 경우, 그렇게 정의되어야만하고 class 벡터c("ordered"," factor")를 가집니다.
Factor들은 현재 실질적인 레벨과 정수로 연결된 names의 두 번째 행을 지정하기위한 정수 행을 사용하여 실행됩니다. 불행하게도, 사용자들은 때때로 몇몇의 계산을 조금 더 쉬게 맘ㄴ들기 위하여 실행을 사용합니다. 그러나 이는 이행 문제이고 R의 모든 이행들을 할 수 있다고 장담할 수 없습니다.
데이터 프레임은 SAS 혹은 SPSS 데이터 셋을 가장 비슷하게 흉내내는 R structure들 입니다, 즉 데이터의 “값에 의한 경우들” 행렬.
데이터 프레임은 모두가 같은 길이(행렬일 경우에는 열의 갯수)를 가지고있는 벡터들, factor들, 그리고/또는 행렬들의 목록입니다. 추가적으로, 데이터 프레임은 일반적으로 값들을 label하는 names 속성과 경우들을 label하는 row.names 속성을 가지고 있습니다.
데이터 프레임은 다른 구성요소들처럼 같은 길이의 목록을 포함할 수 있습니다. 목록은 상이한 길이의 요소들을 포함할 수 있고 그렇게 함으로써 rag된 배열들의 데이터 structure을 제공합니다. 그러나, 현재 이 글에서 그러한 배열들은 일반적으로 올바르게 다루어지지 않습니다.
사용자가 prompt에 명령어를 입력했을 때 (혹은 파일에서부터 expression이 읽혀졌을 때), 그에 처음으로 일어나는 일은 명령어가 parser에 의해 internal representation으로 변형된다는 것입니다. Evaluator는 parse된 R expression들을 실행하고 그 expression의 값을 돌려줍니다. 모든 expression들은 값을 가지고 있습니다. 이는 언어의 핵심입니다.
이 챕터는 evaluator의 기본 mechanism들을 설명하지만, 다른 챕터들에서 나중에 설명되었거나 help 페이지들이 충분히 문서화되어있는 특정한 function들이나 function들의 그룹들에 대하여 이야기하는것은 피합니다.
사용자는 expression들을 구성할 수 있고 그에 evaluator를 적용할 수 있습니다.
Prompt에 바로 입력된 모든 숫자들은 항수이고 평가되어집니다.
> 1 [1] 1
아마 예상밖일지도 모르지만, expression 1에서부터 돌아오는 숫자는 numeric입니다. 대부분의 경우에, 숫자들을 사용할 때 R이 알맞게 할 것이기 때문에 정수와 numeric값의 다른점은 중요하지 않을 것입니다. 하지만, 항수에 확실하게 정수 값을 생성하고 싶을때도 있습니다. 이럴 경우, as.integer function을 call하거나 여러가지의 다른 기술들을 사용함으로써 할 수 있습니다. 하지만 아마도 가장 쉬운 접근방법은 suffix character “L”로 우리의 항수를 qualify 하도록 하는 것 입니다. 예를들어, 정수 값 1을 생성하기위해, 우리는 다음을 사용할 수도 있습니다.
> 1L [1]
‘L’ suffix를 확실하게 정수도 만들려는 의도를 가진 어떠한 숫자라도 qualify하도록 할 때 사용할 수 있습니다. 그래서 ‘0x10L’은 16진법 representation으로부터의 정수값 16ㅇ르 생성합니다. 항수 1e3L은 1000을 numeric값 대신 정수로 주고 이는 1000L과 동일합니다. (‘L’이 3이 아닌 1e3항을 qualify 하는 것 처럼 취급됩니다.) 만약 우리가 정수값이 아닌 ‘L’로, 예를들어 1e-3L, 값을 qualify한다면, warning을 받고 numeric값이 생성됩니다. Warning은 숫자에 필요하지 않은 소수점이, 예를들어 1.L, 있을때도 생성됩니다.
복소수인 ‘L’을 사용할 때, 예로 12iL, syntax 에러를 받습니다.
항수들은꽤나 지루하고 부호들이 필요할 때 더 작업합니다.?????(영어가 이상)
새로운 값이 생성되었을 때, 이는 찾아질 수 있도록 이름이 있어야만하고 보통 값이 있습니다. 이름 자체가 symbol입니다. Symbol이 평가될 때 그 값이 되돌려집니다. 나중에 symbol에 관련된 값을 어떻게 알아내는지를 자세하게 설명할 것입니다.
아래의 간단한 예제에서 y 는 symbol이고 그의 값은 4입니다. Symbol도 R object이지만, “programming on the language”를 할 때를 제외하고는, symbol들을 직접적으로 쓸 일은 거의 없습니다 (Computing on the language).
> y <- 4 > y [1] 4
대부분의 계산들은 function들의 evaluation이 포함된 R에서 이루어집니다. 이를 function invocation처럼 여길것 입니다. function들은 쉼표로 분리된 argument들의 목록으로 된 이름에의해 불러집니다
> mean(1:10) [1] 5.5
위의 예에서 function mean은 1부터 10까지의 정수 벡터인, 하나의 argument로 불려졌습니다.
R은 다른 목적의 방대한 양의 function들을 포함하고 있습니다. 대부분은 R object인 결과를 산출하기위해 쓰여지지만, 다른 것들은 예를들어 프린트하거나 함수의 그래프를 그리는 것 등의 side effect들을 위하여 사용됩니다.
Function call들은 tagged (혹은 named)된 argument들을 가지고 있을 수 있습니다. plot(x, y, pch = 3)에서처럼 tag가 없는 argument들은, 예로 x가 가로축 값을 그리고 y가 세로축을 나타내는 것과 같이, call의 argument들 중 순차배열에서 이 의미를 구별해야만 하기때문에 positional로 알려져 있습니다. Tags/names의 사용은 많은 양의 옵션적인 argument들이 function들에 매우 편리합니다.특별한 종류의 function call들은 다음과 같이 assignment operator의 왼쪽에 나타날 수도 있습니다.
A special type of function calls can appear on the left hand side of the assignment operator as in
> class(x) <- "foo"
이 구성이 실제로 하는 것은 원래의 object인 class<- function과 오른쪽을 부르는 것입니다. 이 function은 object의 변경을 수행하고 그리고 나서 원래의 값에 다시 저장되는 결과를 돌려줍니다. (적어도 개념상으로, 이가 행해집니다. 몇몇의 추가적인 노력은 필요하지 않은 데이터 중복을 피하도록하는 것 입니다.)
R은 C 프로그래밍 언어의 것도 비슷하게 operator들을 사용한 연산 expression들의 사용을 허용합니다. 예를들어,
> 1 + 2 [1] 3
Expression들은 괄호를 사용하여 그룹지어질 수 있고, function call들과 조합될 수도 있으며, 간단한 방법으로 값들에 assign될 수도 있습니다. R은 아래 테이블에 나열되어있는 다양한 operator들을 포함합니다
> y <- 2 * (a + log(x))
R contains a number of operators. They are listed in the table below.
-
Minus, can be unary or binary +
Plus, can be unary or binary !
Unary not ~
Tilde, used for model formulae, can be either unary or binary ?
Help :
Sequence, binary (in model formulae: interaction) *
Multiplication, binary /
Division, binary ^
Exponentiation, binary %x%
Special binary operators, x can be replaced by any valid name %%
Modulus, binary %/%
Integer divide, binary %*%
Matrix product, binary %o%
Outer product, binary %x%
Kronecker product, binary %in%
Matching operator, binary (in model formulae: nesting) <
Less than, binary >
Greater than, binary ==
Equal to, binary >=
Greater than or equal to, binary <=
Less than or equal to, binary &
And, binary, vectorized &&
And, binary, not vectorized |
Or, binary, vectorized ||
Or, binary, not vectorized <-
Left assignment, binary ->
Right assignment, binary $
List subset, binary
Syntax를 제외하고, operator를 적용하는 것과 function을 부르는 것의 차이는 없습니다. 실질적으로, x+y는‘+‘(x, y)로 동일하게 쓰여질 수 있습니다. ‘+’가 기본 function 이름이 아니기 때문에, quoted 되어야 한다는 것을 유의하십시오.
R은 한번에 데이터의 모든 행렬들을 다루고, 대부분의 기초 operator들과 log 같은 기본 수학 function들은 (위의 테이블에 나타난 것 처럼) 벡터화 됩니다. 이는 예로 같은 길이의 두개의 벡터들을 더하면 암암리에 벡터 인덱스에 looping하는 element-wise 덧셈을 포함한 벡터를 생성할 것입니다. 이는 -, *, 그리고 /와 더 높은 차원의 구조들과 같은 다른 operator들에도 적용합니다. 두 개의 행렬을 곱하는 것은 일반적인 행렬 값을 생산하지 않는다는 것을 특히 유의하십시오 (%*% operator가 이런 목적으로 존재합니다). Vectorized 작업들에 관련된 몇몇의 더 나은 사항들은 Elementary arithmetic operations에서 의논될 것 입니다.
Atomic 벡터의 각각의 요소들에 접근하기 위해서는, x[i] 구성을 일반적으로 사용합니다.
> x <- rnorm(5) > x [1] -0.12526937 -0.27961154 -1.03718717 -0.08156527 1.37167090 > x[2] [1] -0.2796115
List components are more commonly accessed using x$a
or
x[[i]]
.
> x <- options() > x$prompt [1] "> "
Indexing construct들은 assignment의 오른쪽에 나타날 수도 있습니다. assignment.
다른 operator들과 마찬가지로, indexing은 function들에 의해 취급되고, x[2] 대신 ‘[‘(x, 2)를 썼을수도 있습니다.
R의 indexing 작업들은 Indexing에 더 자세하게 설명된 많은 고급 특성들은 포함하고 있습니다.
R의 계산은 statement들을 순차적으로 평가하는 것으로 구성되어져 있습니다. x<-1:10 혹은 mean(y)와 같은 Statement들은 semi-colon이나 새로운 줄에 의해 나누어 질 수 있습니다. Evaluator이 통사적으로 완성된 평가된 statement들과 함께 존재할 때마다 값이 return됩니다. Statement의 평가의 결과는 statement의 값처럼 여겨질 수도 있습니다. 그 값은 언제나 기호로 지정될 수 있습니다.
semicolon들과 새로운 줄은 둘 다 서로 다른 statement들로 사용될 수 있습니다. 새로운 줄이 문장의 끝을 나타낼 수도 있는 반면, Semicolon은 항상 문장의 끝을 나타냅니다. 만약 현재 문장이 syntactically하게 완성되지 않았다면, 새로운 줄들은 evaluator로 간단하게 무시됩니다. 만약 그 세션이 상호적이라면, 그 prompt는 ‘>’ 에서 ‘+’로 바뀝니다.
> x <- 0; x + 5 [1] 5 > y <- 1:10 > 1; 2 [1] 1 [1] 2
문장들은 중괄호 를 사용하여 그룹지어질 수 있습니다. 문장들의 하나의 그룹은 때때로 block이라고 불리어집니다. 단일 문장들은 syntactically하게 완성된 문장의 끝에 새로운 줄이 입력되었을 때 evaluate됩니다. Block들은 끝맺는 중괄호가 입력된 후 새로운 줄이 입력되기 전까지는 evaluate되지 않습니다. 이 섹션의 마지막으로, statement는 단일 문장혹은 block중에 하나를 지칭합니다.
> { x <- 0 + x + 5 + } [1] 5
if/else 문장은 조건적으로 두 개의 문장들을 evaluate합니다. evaluate되려면 조건이 있는데, 만약 값이 TRUE이면 첫번째 문장이 evaluate됩니다; 그렇지 않으면 두번째 문장이 evaluate됩니다. if/else 문장은 선택된 문장의 값을 그의 값인 것 처럼 return합니다. 공식적인 syntax는 다음과 같습니다.
if ( statement1 ) statement2 else statement3
첫 째로, statement1은 value1을 산추하기위해 evaluate됩니다. 만약 value1이 첫 번째element가 TRUE인 logical 벡터이면 statement2가evaluate됩니다. 만약 value1의 첫 번째 element가 FAULSE이면 statement3가 evaluate됩니다. 만약 value1이 숫자 벡터이면 value1의 첫 번째 element가 제로일 때 statement3이 evaluate되고 그렇지 않으면 statment2가 evaluate됩니다. Value1의 첫 번째 element만이 사용됩니다. 다른 모든 element들은 무시됩니다. 만약 value1이 logical이나 숫자 벡터가 아닌 다른 종류이면 에러 신호가 보내질 것입니다.
If/else 문장들은 음수의 logarithm을 취하는 등의 숫자 문제들을 피하기위해 사용될 수도 있습니다. If/else 문장들은 다른 문장들과 같기 때문에 그들에게 값을 지정할 수 있습니다. 아래의 두 개의 예는 동일합니다.
> if( any(x <= 0) ) y <- log(1+x) else y <- log(x) > y <- if( any(x <= 0) ) log(1+x) else log(x)
else 절은 선택사항입니다. if(any(x <= 0)) x <- x[x <= 0]문장은 유효합니다. If 문장이 else에서 막히지 않았을 때, 만약 존재한다면, statement2의 끝에서 처럼 같은 줄에 나타나야만 합니다. 그렇지 않으면 statement2 끝의 새로운 줄은 if를 완성할 것이고 evaluate이 된 syntactically하게 완성된 문장을 산출 할 것입니다. 간단한 해결책은 else를 문장의 끝을 나타내는 끝마치는 중괄호와 같은 줄에 넣고, 중괄호들 안에 둘러싸인 조합된 문장을 사용하는 것입니다.
If/else 문장들은 nested될 수 있습니다.
if ( statement1 ) { statement2 } else if ( statement3 ) { statement4 } else if ( statement5 ) { statement6 } else statement8
짝수 숫자의 문장들 중 하나는 evaluate될 것이고 값을 return하는 결과를 일으킬 것입니다. 만약 선택사항인 else절이 생략되고 모든 홀수 숫자의 문장들이 FALSE로 evaluate된다면, 아무런 문장도 evaluate되지 않을 것이고 NULL이 return됩니다.
홀수 숫자의 문장들은 TRUE일 때 까지 순서대로 evaluate되고 그런 다음 연관된 짝수 숫자의 문장들이 evaluate됩니다. 위의 예제에서, statement6는 statement1이 FALSE이고 statement3가 FALSE이고 statement5가 TRUE일 때만 evaluate됩니다. else if 절이 허용되는 갯 수의 제한은 없습니다.
R은 명쾌한 looping을 제공하는 세 가지 statement들을 가지고 있습니다. 그들은 for, while, 그리고 repeat입니다. 두 개의 built-in 구성들, next와 break,는 evaluation에 대한 추가적인 컨트롤을 제공합니다. 각각의 세 statement들은 evaluate된 마지막 statetment의 값을 return합니다. 흔하지는 않지만, statement들 중 하나의 결과를 symbol에 지정하는 것이 가능합니다. R은 tapply, apply, 그리고 lapply와 같은 함축적인 looing들을 위한 다른 function들을 제공합니다. 추가적으로, 많은 operation들, 특히 산술적인것들,은 벡터화되기 때문에 loopd을 사용하지 않아도 될지도 모릅니다.
명쾨하게 looping을 컨트롤하는데 사용되어 질 수 있는 두 개의 statement들이 있습니다. 그들은 break와 next입니다. break statement는 현재 실행되고있는 가장 안쪽의 loop에서부터의 exit을 바로하게하는 원인입니다. next statement는 loop의 시작으로 return하기위한 컨트롤을 바로 일으킵니다. loop의 다음 반복이 (만약에 있다면) 그 다음에 execute됩니다. 현재 loop안의 next아래의 statement는 evaluate되지 않습니다.
Loop statement에 의해 return된 값은 항상 NULL이고 보이지 않게 return 됩니다.
repeat statement는 break가 특별히 요청되기 전 까지 body의 evaluation를 반복하는 것을 초래합니다. 이는 무한 loop의 위험때문에 repeat을 사용할 때 조심해야 한다는 뜻입니다. repeat loop의 Syntax는 다음과 같습니다.
repeat statement
repeat을 사용할 때, statement는 block statement이어야만 합니다. loop에서부터 break를 하던지 하지 않던지 간에 몇몇의 계산과 테스트 둘 다를 수행해야하고 보통 이는 두 개의 statement들을 필요로 합니다.
while statement는 repeat statement와 매우 유사합니다. while loop의 syntax는 다음과 같습니다.
while ( statement1 ) statement2
statement1이 evaluate되고 만약 값이 TRUE라면 statement2가 evaluate됩니다. 이 프로세스는 statement1이 FALSE로 evaluate될 때까지 계속됩니다.
for loop의 syntax는 아래와 같습니다.
for ( name in vector ) statement1
vector 은 벡터 혹은 목록이 될 수 있습니다. vector 안의 각각의 element에 간해 name 값은 element의 값으로 설정되고 statement1가 evaluate됩니다. 부작용은 loop이 끝나고도 name 값이 계속 존재하고 이가 loop이 evaluate된vector의 마지막 element의 값을 가지고 있다는 것입니다.
Technically speaking, switch
is just another function, but its
semantics are close to those of control structures of other programming
languages.
The syntax is
switch (statement, list)
where the elements of list may be named. First, statement is
evaluated and the result, value, obtained. If value is a number
between 1 and the length of list then the corresponding element of
list is evaluated and the result returned. If value is too
large or too small NULL
is returned.
> x <- 3 > switch(x, 2+2, mean(1:10), rnorm(5)) [1] 2.2903605 2.3271663 -0.7060073 1.3622045 -0.2892720 > switch(2, 2+2, mean(1:10), rnorm(5)) [1] 5.5 > switch(6, 2+2, mean(1:10), rnorm(5)) NULL
If value is a character vector then the element of ‘...’ with a
name that exactly matches value is evaluated. If there is no match a
single unnamed argument will be used as a default. If no default is
specified, NULL
is returned.
> y <- "fruit" > switch(y, fruit = "banana", vegetable = "broccoli", "Neither") [1] "banana" > y <- "meat" > switch(y, fruit = "banana", vegetable = "broccoli", "Neither") [1] "Neither"
A common use of switch
is to branch according to the character value
of one of the arguments to a function.
> centre <- function(x, type) { + switch(type, + mean = mean(x), + median = median(x), + trimmed = mean(x, trim = .1)) + } > x <- rcauchy(10) > centre(x, "mean") [1] 0.8760325 > centre(x, "median") [1] 0.5360891 > centre(x, "trimmed") [1] 0.6086504
switch
returns either the value of the statement that was evaluated
or NULL
if no statement was evaluated.
To choose from a list of alternatives that already exists switch
may
not be the best way to select one for evaluation. It is often better to use
eval
and the subset operator, [[
, directly via
eval(x[[condition]])
.
In this section, we discuss the finer points of the rules that apply to basic operation like addition or multiplication of two vectors or matrices.
If one tries to add two structures with a different number of elements, then
the shortest is recycled to length of longest. That is, if for instance you
add c(1, 2, 3)
to a six-element vector then you will really add
c(1, 2, 3, 1, 2, 3)
. If the length of the longer vector is not a
multiple of the shorter one, a warning is given.
As from R 1.4.0, any arithmetic operation involving a zero-length vector has a zero-length result.
propagation of names (first one wins, I think - also if it has no names?? —- first one *with names* wins, recycling causes shortest to lose names)
(matrix+matrix, dimensions must match. vector+matrix: first recycle, then check if dims fit, error if not)
Missing values in the statistical sense, that is, variables whose value is
not known, have the value NA
. This should not be confused with the
missing
property for a function argument that has not been supplied
(see Arguments).
As the elements of an atomic vector must be of the same type there are
multiple types of NA
values. There is one case where this is
particularly important to the user. The default type of NA
is
logical
, unless coerced to some other type, so the appearance of a
missing value may trigger logical rather than numeric indexing (see
Indexing for details).
Numeric and logical calculations with NA
generally return
NA
. In cases where the result of the operation would be the same for
all possible values the NA
could take, the operation may return this
value. In particular, ‘FALSE & NA’ is FALSE
, ‘TRUE | NA’ is
TRUE
. NA
is not equal to any other value or to itself;
testing for NA
is done using is.na
.
However, an NA
value will match another NA
value in
match
.
Numeric calculations whose result is undefined, such as ‘0/0’, produce
the value NaN
. This exists only in the double
type and for
real or imaginary components of the complex type. The function
is.nan
is provided to check specifically for
NaN
, is.na
also returns TRUE
for NaN
.
Coercing NaN
to logical or integer type gives an NA
of the
appropriate type, but coercion to character gives the string "NaN"
.
NaN
values are incomparable so tests of equality or collation
involving NaN
will result in NA
. They are regarded as
matching any NaN
value (and no other value, not even NA
) by
match
.
The NA
of character type is as from R 1.5.0 distinct from the string
"NA"
. Programmers who need to specify an explicit string NA
should use ‘as.character(NA)’ rather than "NA"
, or set elements
to NA
using is.na<-
.
As from R 2.5.0 there are constants NA_integer_
, NA_real_
,
NA_complex_
and NA_character_
which will generate (in the
parser) an NA
value of the appropriate type, and will be used in
deparsing when it is not otherwise possible to identify the type of an
NA
(and the control
options ask for this to be done).
There is no NA
value for raw vectors.
R contains several constructs which allow access to individual elements
or subsets through indexing operations. In the case of the basic vector
types one can access the i-th element using x[i]
, but there is also
indexing of lists, matrices, and multi-dimensional arrays. There are
several forms of indexing in addition to indexing with a single integer.
Indexing can be used both to extract part of an object and to replace parts
of an object (or to add parts).
R has three basic indexing operators, with syntax displayed by the following examples
x[i] x[i, j] x[[i]] x[[i, j]] x$a x$"a"
For vectors and matrices the [[
forms are rarely used, although they
have some slight semantic differences from the [
form (e.g. it drops
any names
or dimnames
attribute, and that partial matching is
used for character indices). When indexing multi-dimensional structures
with a single index, x[[i]]
or x[i]
will return the i
th
sequential element of x
.
For lists, one generally uses [[
to select any single element,
whereas [
returns a list of the selected elements.
The [[
form allows only a single element to be selected using integer
or character indices, whereas [
allows indexing by vectors. Note
though that for a list or other recursive object, the index can be a vector
and each element of the vector is applied in turn to the list, the selected
component, the selected component of that component, and so on. The result
is still a single element.
The form using $
applies to recursive objects such as lists and
pairlists. It allows only a literal character string or a symbol as the
index. That is, the index is not computable: for cases where you need to
evaluate an expression to find the index, use x[[expr]]
. When
$
is applied to a non-recursive object the result used to be always
NULL
: as from R 2.6.0 this is an error.
R allows some powerful constructions using vectors as indices. We shall
discuss indexing of simple vectors first. For simplicity, assume that the
expression is x[i]
. Then the following possibilities exist according
to the type of i
.
i
must have the same sign. If
they are positive, the elements of x
with those index numbers are
selected. If i
contains negative elements, all elements except those
indicated are selected.
If i
is positive and exceeds length(x)
then the corresponding
selection is NA
. Negative out of bounds values for i
are
silently disregarded since R version 2.6.0, S compatibly, as they mean to
drop non-existing elements and that is an empty operation (“no-op”).
A special case is the zero index, which has null effects: x[0]
is an
empty vector and otherwise including zeros among positive or negative
indices has the same effect as if they were omitted.
i
should generally have the same
length as x
. If it is shorter, then its elements will be recycled as
discussed in Elementary arithmetic operations. If it is longer, then
x
is conceptually extended with NA
s. The selected values of
x
are those for which i
is TRUE
.
i
are matched against the names
attribute of x
and the resulting integers are used. For [[
and $
partial matching is used if exact matching fails, so
x$aa
will match x$aabb
if x
does not contain a
component named "aa"
and "aabb"
is the only name which has
prefix "aa"
. For [[
, partial matching can be controlled via
the exact
argument which defaults to NA
indicating that
partial matching is allowed, but should result in a warning when it occurs.
Setting exact
to TRUE
prevents partial matching from
occurring, a FALSE
value allows it and does not issue any warnings.
Note that [
always requires an exact match. The string ""
is
treated specially: it indicates ‘no name’ and matches no element (not even
those without a name). Note that partial matching is only used when
extracting and not when replacing.
x[as.integer(i)]
. The
factor levels are never used. If so desired, use x[as.character(i)]
or a similar construction.
x[]
returns x
, but drops
“irrelevant” attributes from the result. Only names
and in
multi-dimensional arrays dim
and dimnames
attributes are
retained.
integer(0)
.
Indexing with a missing (i.e. NA
) value gives an NA
result.
This rule applies also to the case of logical indexing, i.e. the elements
of x
that have an NA
selector in i
get included in the
result, but their value will be NA
.
Notice however, that there are different modes of NA
—the literal
constant is of mode "logical"
, but it is frequently automatically
coerced to other types. One effect of this is that x[NA]
has the
length of x
, but x[c(1, NA)]
has length 2. That is because
the rules for logical indices apply in the former case, but those for
integer indices in the latter.
Indexing with [
will also carry out the relevant subsetting of any
names attributes.
Subsetting multi-dimensional structures generally follows the same rules as
single-dimensional indexing for each index variable, with the relevant
component of dimnames
taking the place of names
. A couple of
special rules apply, though:
Normally, a structure is accessed using the number of indices corresponding
to its dimension. It is however also possible to use a single index in
which case the dim
and dimnames
attributes are disregarded and
the result is effectively that of c(m)[i]
. Notice that m[1]
is usually very different from m[1, ]
or m[, 1]
.
It is possible to use a matrix of integers as an index. In this case, the
number of columns of the matrix should match the number of dimensions of the
structure, and the result will be a vector with length as the number of rows
of the matrix. The following example shows how to extract the elements
m[1, 1]
and m[2, 2]
in one operation.
> m <- matrix(1:4, 2) > m [,1] [,2] [1,] 1 3 [2,] 2 4 > i <- matrix(c(1, 1, 2, 2), 2, byrow = TRUE) > i [,1] [,2] [1,] 1 1 [2,] 2 2 > m[i] [1] 1 4
Indexing matrices may not contain negative indices. NA
and zero
values are allowed: rows in an index matrix containing a zero are ignored,
whereas rows containing an NA
produce an NA
in the result.
Both in the case of using a single
index and in matrix indexing, a names
attribute is used if present,
as had the structure been one-dimensional.
If an indexing operation causes the result to have one of its extents of
length one, as in selecting a single slice of a three-dimensional matrix
with (say) m[2, , ]
, the corresponding dimension is generally dropped
from the result. If a single-dimensional structure results, a vector is
obtained. This is occasionally undesirable and can be turned off by adding
the ‘drop = FALSE’ to the indexing operation. Notice that this is an
additional argument to the [
function and doesn’t add to the index
count. Hence the correct way of selecting the first row of a matrix as a
1 by n matrix is m[1, , drop = FALSE]
. Forgetting to
disable the dropping feature is a common cause of failure in general
subroutines where an index occasionally, but not usually has length one.
This rule still applies to a one-dimensional array, where any subsetting
will give a vector result unless ‘drop = FALSE’ is used.
Notice that vectors are distinct from one-dimensional arrays in that the
latter have dim
and dimnames
attributes (both of length one).
One-dimensional arrays are not easily obtained from subsetting operations
but they can be constructed explicitly and are returned by table
.
This is sometimes useful because the elements of the dimnames
list
may themselves be named, which is not the case for the names
attribute.
Some operations such as m[FALSE, ]
result in structures in which a
dimension has zero extent. R generally tries to handle these structures
sensibly.
The operator [
is a generic function which allows class methods to be
added, and the $
and [[
operators likewise. Thus, it is
possible to have user-defined indexing operations for any structure. Such a
function, say [.foo
is called with a set of arguments of which the
first is the structure being indexed and the rest are the indices. In the
case of $
, the index argument is of mode "symbol"
even when
using the x$"abc"
form. It is important to be aware that class
methods do not necessarily behave in the same way as the basic methods, for
example with respect to partial matching.
The most important example of a class method for [
is that used for
data frames. It is not described in detail here (see the help page for
[.data.frame
, but in broad terms, if two indices are supplied (even
if one is empty) it creates matrix-like indexing for a structure that is
basically a list of vectors of the same length. If a single index is
supplied, it is interpreted as indexing the list of columns—in that case
the drop
argument is ignored, with a warning.
The basic operators $
and [[
can be applied to environments.
Only character indices are allowed and no partial matching is done.
Assignment to subsets of a structure is a special case of a general mechanism for complex assignment:
x[3:5] <- 13:15
The result of this command is as if the following had been executed
`*tmp*` <- x x <- "[<-"(`*tmp*`, 3:5, value=13:15) rm(`*tmp*`)
Note that the index is first converted to a numeric index and then the
elements are replaced sequentially along the numeric index, as if a
for
loop had been used. Any existing variable called `*tmp*`
will be overwritten and deleted, and this variable name should not be used
in code.
The same mechanism can be applied to functions other than [
. The
replacement function has the same name with <-
pasted on. Its last
argument, which must be called value
, is the new value to be
assigned. For example,
names(x) <- c("a","b")
is equivalent to
`*tmp*` <- x x <- "names<-"(`*tmp*`, value=c("a","b")) rm(`*tmp*`)
Nesting of complex assignments is evaluated recursively
names(x)[3] <- "Three"
is equivalent to
`*tmp*` <- x x <- "names<-"(`*tmp*`, value="[<-"(names(`*tmp*`), 3, value="Three")) rm(`*tmp*`)
Complex assignments in the enclosing environment (using <<-
) are also
permitted:
names(x)[3] <<- "Three"
is equivalent to
`*tmp*` <<- get(x, envir=parent.env(), inherits=TRUE) names(`*tmp*`)[3] <- "Three" x <<- `*tmp*` rm(`*tmp*`)
and also to
`*tmp*` <- get(x,envir=parent.env(), inherits=TRUE) x <<- "names<-"(`*tmp*`, value="[<-"(names(`*tmp*`), 3, value="Three")) rm(`*tmp*`)
Only the target variable is evaluated in the enclosing environment, so
e<-c(a=1,b=2) i<-1 local({ e <- c(A=10,B=11) i <-2 e[i] <<- e[i]+1 })
uses the local value of i
on both the LHS and RHS, and the local
value of e
on the RHS of the superassignment statement. It sets
e
in the outer environment to
a b 1 12
That is, the superassignment is equivalent to the four lines
`*tmp*` <- get(e, envir=parent.env(), inherits=TRUE) `*tmp*`[i] <- e[i]+1 e <<- `*tmp*` rm(`*tmp*`)
Similarly
x[is.na(x)] <<- 0
is equivalent to
`*tmp*` <- get(x,envir=parent.env(), inherits=TRUE) `*tmp*`[is.na(x)] <- 0 x <<- `*tmp*` rm(`*tmp*`)
and not to
`*tmp*` <- get(x,envir=parent.env(), inherits=TRUE) `*tmp*`[is.na(`*tmp*`)] <- 0 x <<- `*tmp*` rm(`*tmp*`)
These two candidate interpretations differ only if there is also a local
variable x
. It is a good idea to avoid having a local variable with
the same name as the target variable of a superassignment. As this case was
handled incorrectly in versions 1.9.1 and earlier there must not be a
serious need for such code.
Almost every programming language has a set of scoping rules, allowing the same name to be used for different objects. This allows, e.g., a local variable in a function to have the same name as a global object.
R uses a lexical scoping model, similar to languages like Pascal. However, R is a functional programming language and allows dynamic creation and manipulation of functions and language objects, and has additional features reflecting this fact.
The global environment is the root of the user workspace. An assignment operation from the command line will cause the relevant object to belong to the global environment. Its enclosing environment is the next environment on the search path, and so on back to the empty environment that is the enclosure of the base environment.
Every call to a function creates a frame which contains the local variables created in the function, and is evaluated in an environment, which in combination creates a new environment.
Notice the terminology: A frame is a set of variables, an environment is a nesting of frames (or equivalently: the innermost frame plus the enclosing environment).
Environments may be assigned to variables or be contained in other objects. However, notice that they are not standard objects—in particular, they are not copied on assignment.
A closure (mode "function"
) object will contain the environment in
which it is created as part of its definition (By default. The environment
can be manipulated using environment<-
). When the function is
subsequently called, its
evaluation environment is created with the closure’s environment as
enclosure. Notice that this is not necessarily the environment of the
caller!
Thus, when a variable is requested inside a function, it is first sought in the evaluation environment, then in the enclosure, the enclosure of the enclosure, etc.; once the global environment or the environment of a package is reached, the search continues up the search path to the environment of the base package. If the variable is not found there, the search will proceed next to the empty environment, and will fail.
Every time a function is invoked a new evaluation frame is created. At any point in time during the computation the currently active environments are accessible through the call stack. Each time a function is invoked a special construct called a context is created internally and is placed on a list of contexts. When a function has finished evaluating its context is removed from the call stack.
Making variables defined higher up the call stack available is called dynamic scope. The binding for a variable is then determined by the most recent (in time) definition of the variable. This contradicts the default scoping rules in R, which use the bindings in the environment in which the function was defined (lexical scope). Some functions, particularly those that use and manipulate model formulas, need to simulate dynamic scope by directly accessing the call stack.
Access to the call stack is provided through a family of functions which have names that start with ‘sys.’. They are listed briefly below.
sys.call
Get the call for the specified context.
sys.frame
Get the evaluation frame for the specified context.
sys.nframe
Get the environment frame for all active contexts.
sys.function
Get the function being invoked in the specified context.
sys.parent
Get the parent of the current function invocation.
sys.calls
Get the calls for all the active contexts.
sys.frames
Get the evaluation frames for all the active contexts.
sys.parents
Get the numeric labels for all active contexts.
sys.on.exit
Set a function to be executed when the specified context is exited.
sys.status
Calls sys.frames
, sys.parents
and sys.calls
.
parent.frame
Get the evaluation frame for the specified parent context.
In addition to the evaluation environment structure, R has a search path of environments which are searched for variables not found elsewhere. This is used for two things: packages of functions and attached user data.
The first element of the search path is the global environment and the last
is the base package. An Autoloads
environment is used for holding
proxy objects that may be loaded on demand. Other environments are inserted
in the path using attach
or library
.
Packages which have a namespace have a different search path. When a search for an R object is started from an object in such a package, the package itself is searched first, then its imports, then the base namespace and finally the global environment and the rest of the regular search path. The effect is that references to other objects in the same package will be resolved to the package, and objects cannot be masked by objects of the same name in the global environment or in other packages.
While R can be very useful as a data analysis tool most users very quickly find themselves wanting to write their own functions. This is one of the real advantages of R. Users can program it and they can, if they want to, change the system level functions to functions that they find more appropriate.
R also provides facilities that make it easy to document any functions that you have created. See Writing R documentation in Writing R Extensions.
The syntax for writing a function is
function ( arglist ) body
The first component of the function declaration is the keyword
function
which indicates to R that you want to create a function.
An argument list is a comma separated list of formal arguments. A formal argument can be a symbol, a statement of the form ‘symbol = expression’, or the special formal argument ‘...’.
The body can be any valid R expression. Generally, the body is a group of expressions contained in curly braces (‘{’ and ‘}’).
Generally
functions are assigned to symbols but they don’t need to be. The value
returned by the call to function
is a function. If this is not given
a name it is referred to as an
anonymous function. Anonymous functions are most frequently used as
arguments to other functions such as the apply
family or
outer
.
Here is a simple function: echo <- function(x) print(x)
. So
echo
is a function that takes a single argument and when echo
is invoked it prints its argument.
The formal arguments to the function define the variables whose values will be supplied at the time the function is invoked. The names of these arguments can be used within the function body where they obtain the value supplied at the time of function invocation.
Default values for arguments can be specified using the special form ‘name = expression’. In this case, if the user does not specify a value for the argument when the function is invoked the expression will be associated with the corresponding symbol. When a value is needed the expression is evaluated in the evaluation frame of the function.
Default behaviours can also be specified by using the function
missing
. When missing
is called with the
name of a formal argument it returns TRUE
if the formal argument was
not matched with any actual argument and has not been subsequently modified
in the body of the function. An argument that is missing
will thus
have its default value, if any. The missing
function does not force
evaluation of the argument.
The special type of argument ‘...’ can contain any number of supplied arguments. It is used for a variety of purposes. It allows you to write a function that takes an arbitrary number of arguments. It can be used to absorb some arguments into an intermediate function which can then be extracted by functions called subsequently.
Functions are first class objects in R. They can be used anywhere that an R object is required. In particular they can be passed as arguments to functions and returned as values from functions. See Function objects for the details.
When a function is called or invoked a new evaluation frame is created. In this frame the formal arguments are matched with the supplied arguments according to the rules given in Argument matching. The statements in the body of the function are evaluated sequentially in this environment frame.
The enclosing frame of the evaluation frame is the environment frame
associated with the function being invoked. This may be different from
S. While many functions have .GlobalEnv
as their environment
this does not have to be true and functions defined in packages with
namespaces (normally) have the package namespace as their environment.
This subsection applies to closures but not to primitive functions. The
latter typically ignore tags and do positional matching, but their help
pages should be consulted for exceptions, which include log
,
round
, signif
, rep
and seq.int
.
The first thing that occurs in a function evaluation is the matching of formal to the actual or supplied arguments. This is done by a three-pass process:
f <- function(fumble, fooey) fbody
,
then f(f = 1, fo = 2)
is illegal, even though the 2nd actual argument
only matches fooey
. f(f = 1, fooey = 2)
is legal
though since the second argument matches exactly and is removed from
consideration for partial matching. If the formal arguments contain
‘...’ then partial matching is only applied to arguments that precede
it.
If any arguments remain unmatched an error is declared.
Argument matching is augmented by the functions match.arg
,
match.call
and match.fun
.
Access to the partial matching algorithm used by R is via pmatch
.
One of the most important things to know about the evaluation of arguments to a function is that supplied arguments and default arguments are treated differently. The supplied arguments to a function are evaluated in the evaluation frame of the calling function. The default arguments to a function are evaluated in the evaluation frame of the function.
The semantics of invoking a function in R argument are call-by-value. In general, supplied arguments behave as if they are local variables initialized with the value supplied and the name of the corresponding formal argument. Changing the value of a supplied argument within a function will not affect the value of the variable in the calling frame.
R has a form of lazy evaluation of function arguments. Arguments are not
evaluated until needed. It is important to realize that in some cases the
argument will never be evaluated. Thus, it is bad style to use arguments to
functions to cause side-effects. While in C it is common to use the
form, foo(x = y)
to invoke foo
with the value of y
and
simultaneously to assign the value of y
to x
this same style
should not be used in R. There is no guarantee that the argument will
ever be evaluated and hence the
assignment may not take place.
It is also worth noting that the effect of foo(x <- y)
if the
argument is evaluated is to change the value of x
in the calling
environment and not in the
evaluation environment of foo
.
It is possible to access the actual (not default) expressions used as
arguments inside the function. The mechanism is implemented via promises.
When a
function is being evaluated the actual expression used as an argument is
stored in the promise together with a pointer to the environment the
function was called from. When (if) the argument is evaluated the stored
expression is evaluated in the environment that the function was called
from. Since only a pointer to the environment is used any changes made to
that environment will be in effect during this evaluation. The resulting
value is then also stored in a separate spot in the promise. Subsequent
evaluations retrieve this stored value (a second evaluation is not carried
out). Access to the unevaluated expression is also available using
substitute
.
When a function is called, each formal argument is assigned a promise in the local environment of the call with the expression slot containing the actual argument (if it exists) and the environment slot containing the environment of the caller. If no actual argument for a formal argument is given in the call and there is a default expression, it is similarly assigned to the expression slot of the formal argument, but with the environment set to the local environment.
The process of filling the value slot of a promise by evaluating the contents of the expression slot in the promise’s environment is called forcing the promise. A promise will only be forced once, the value slot content being used directly later on.
A promise is forced when its value is needed. This usually happens inside
internal
functions, but a promise can also be forced by direct evaluation of the
promise itself. This is occasionally useful when a default expression
depends on the value of another formal argument or other variable in the
local environment. This is seen in the following example where the lone
label
ensures that the label is based on the value of x
before
it is changed in the next line.
function(x, label = deparse(x)) { label x <- x + 1 print(label) }
The expression slot of a promise can itself involve other promises. This happens whenever an unevaluated argument is passed as an argument to another function. When forcing a promise, other promises in its expression will also be forced recursively as they are evaluated.
Scope or the scoping rules are simply the set of rules used by the evaluator to find a value for a symbol. Every computer language has a set of such rules. In R the rules are fairly simple but there do exist mechanisms for subverting the usual, or default rules.
R adheres to a set of rules that are called lexical scope. This means the variable bindings in effect at the time the expression was created are used to provide values for any unbound symbols in the expression.
Most of the interesting properties of scope are involved with evaluating functions and we concentrate on this issue. A symbol can be either bound or unbound. All of the formal arguments to a function provide bound symbols in the body of the function. Any other symbols in the body of the function are either local variables or unbound variables. A local variable is one that is defined within the function. Because R has no formal definition of variables, they are simply used as needed, it can be difficult to determine whether a variable is local or not. Local variables must first be defined, this is typically done by having them on the left-hand side of an assignment.
During the evaluation process if an unbound symbol is detected then R attempts to find a value for it. The scoping rules determine how this process proceeds. In R the environment of the function is searched first, then its enclosure and so on until the global environment is reached.
The global environment heads a search list of environments that are searched sequentially for a matching symbol. The value of the first match is then used.
When this set of rules is combined with the fact that functions can be returned as values from other functions then some rather nice, but at first glance peculiar, properties obtain.
A simple example:
f <- function() { y <- 10 g <- function(x) x + y return(g) } h <- f() h(3)
A rather interesting question is what happens when h
is evaluated.
To describe this we need a bit more notation. Within a
function body variables can be bound, local or unbound. The bound variables
are those that match the formal arguments to the function. The local
variables are those that were created or defined within the function body.
The unbound variables are those that are neither local nor bound. When a
function body is evaluated there is no problem determining values for local
variables or for bound variables. Scoping rules determine how the language
will find values for the unbound variables.
When h(3)
is evaluated we see that its body is that of
g
. Within that body x
is bound to the formal argument and
y
is unbound. In a language with
lexical scope x
will be associated with the value 3 and y
with
the value 10 local to f
so h(3)
should return the value 13.
In R this is indeed what happens.
In S, because of the different scoping rules one will get an error
indicating that y
is not found, unless there is a variable y
in your workspace in which case its value will be used.
Object-oriented programming is a style of programming that has become popular in recent years. Much of the popularity comes from the fact that it makes it easier to write and maintain complicated systems. It does this through several different mechanisms.
Central to any object-oriented language are the concepts of class and of methods. A class is a definition of an object. Typically a class contains several slots that are used to hold class-specific information. An object in the language must be an instance of some class. Programming is based on objects or instances of classes.
Computations are carried out via methods. Methods are basically functions that are specialized to carry out specific calculations on objects, usually of a specific class. This is what makes the language object oriented. In R, generic functions are used to determine the appropriate method. The generic function is responsible for determining the class of its argument(s) and uses that information to select the appropriate method.
Another feature of most object-oriented languages is the concept of inheritance. In most programming problems there are usually many objects that are related to one another. The programming is considerably simplified if some components can be reused.
If a class inherits from another class then generally it gets all the slots in the parent class and can extend it by adding new slots. On method dispatching (via the generic functions) if a method for the class does not exist then a method for the parent is sought.
In this chapter we discuss how this general strategy has been implemented in R and discuss some of the limitations within the current design. One of the advantages that most object systems impart is greater consistency. This is achieved via the rules that are checked by the compiler or interpreter. Unfortunately because of the way that the object system is incorporated into R this advantage does not obtain. Users are cautioned to use the object system in a straightforward manner. While it is possible to perform some rather interesting feats these tend to lead to obfuscated code and may depend on implementation details that will not be carried forward.
The greatest use of object oriented programming in R is through
print
methods, summary
methods and plot
methods. These
methods allow us to have one generic
function call, plot
say, that dispatches on the type of its argument
and calls a plotting function that is specific to the data supplied.
In order to make the concepts clear we will consider the implementation of a small system designed to teach students about probability. In this system the objects are probability functions and the methods we will consider are methods for finding moments and for plotting. Probabilities can always be represented in terms of the cumulative distribution function but can often be represented in other ways. For example as a density, when it exists or as a moment generating function when it exists.
Rather than having a full-fledged
object-oriented system R has a class system and a mechanism for
dispatching based on the class of an object. The dispatch mechanism for
interpreted code relies on four special objects that are stored in the
evaluation frame. These special objects are .Generic
, .Class
,
.Method
and .Group
. There is a separate dispatch mechanism
used for internal functions and types that will be discussed elsewhere.
The class system is facilitated through the class
attribute. This
attribute is a character vector of class names. So to create an object of
class "foo"
one simply attaches a class attribute with the string
‘"foo"’ in it. Thus, virtually anything can be turned in to an object
of class "foo"
.
The object system makes use of
generic functions via two dispatching functions, UseMethod
and
NextMethod
. The typical use of the object system is to begin by
calling a generic function. This is typically a very simple function and
consists of a single line of code. The system function mean
is just
such a function,
> mean function (x, ...) UseMethod("mean")
When mean
is called it can have any number of arguments but its first
argument is special and the class of that first argument is used to
determine which method should be called. The variable .Class
is set
to the class attribute of x
, .Generic
is set to the string
"mean"
and a search is made for the correct method to invoke. The
class attributes of any other arguments to mean
are ignored.
Suppose that x
had a class attribute that contained "foo"
and
"bar"
, in that order. Then R would first search for a function
called mean.foo
and if it did not find one it would then search for a
function mean.bar
and if that search was also unsuccessful then a
final search for mean.default
would be made. If the last search is
unsuccessful R reports an error. It is a good idea to always write a
default method. Note that the functions mean.foo
etc. are referred
to, in this context, as methods.
NextMethod
provides another mechanism for dispatching. A
function may have a call to NextMethod
anywhere in it. The
determination of which method should then be invoked is based primarily on
the current values of .Class
and .Generic
. This is somewhat
problematic since the method is really an ordinary function and users may
call it directly. If they do so then there will be no values for
.Generic
or .Class
.
If a method is invoked directly and it contains a call to NextMethod
then the first argument to NextMethod
is used to determine the
generic function. An error is signalled if this argument has not been
supplied; it is therefore a good idea to always supply this argument.
In the case that a method is invoked directly the class attribute of the
first argument to the method is used as the value of .Class
.
Methods themselves employ NextMethod
to provide a form of
inheritance. Commonly a specific method performs a few operations to set up
the data and then it calls the next appropriate method through a call to
NextMethod
.
Consider the following simple example. A point in two-dimensional Euclidean
space can be specified by its Cartesian (x-y) or polar (r-theta)
coordinates. Hence, to store information about the location of the point,
we could define two classes, "xypoint"
and "rthetapoint"
. All
the ‘xypoint’ data structures are lists with an x-component and a
y-component. All ‘rthetapoint’ objects are lists with an r-component and a
theta-component.
Now, suppose we want to get the x-position from either type of object. This
can easily be achieved through
generic functions. We define the generic function xpos
as follows.
xpos <- function(x, ...) UseMethod("xpos")
Now we can define methods:
xpos.xypoint <- function(x) x$x xpos.rthetapoint <- function(x) x$r * cos(x$theta)
The user simply calls the function xpos
with either representation as
the argument. The internal dispatching method finds the class of the object
and calls the appropriate methods.
It is pretty easy to add other representations. One need not write a new generic function only the methods. This makes it easy to add to existing systems since the user is only responsible for dealing with the new representation and not with any of the existing representations.
The bulk of the uses of this methodology are to provide specialized printing
for objects of different types; there are about 40 methods for print
.
The class attribute of an object can have several elements. When a
generic function is called the first inheritance is mainly handled through
NextMethod
. NextMethod
determines the method currently being
evaluated, finds the next class from th
FIXME: something is missing here
Generic functions should consist of a single statement. They should usually
be of the form foo <- function(x, ...) UseMethod("foo", x)
. When
UseMethod
is called, it determines the appropriate method and then
that method is invoked with the same arguments, in the same order as the
call to the generic, as if the call had been made directly to the method.
In order to determine the correct method the class attribute of the first
argument to the generic is obtained and used to find the correct method.
The
name of the generic function is combined with the first element of the class
attribute into the form, generic.class
and a function
with that name is sought. If the function is found then it is used. If no
such function is found then the second element of the class attribute is
used, and so on until all the elements of the class attribute have been
exhausted. If no method has been found at that point then the method
generic.default
is used. If the first argument to the
generic function has no class attribute then
generic.default
is used. Since the introduction of
namespaces the methods may not be accessible by their names
(i.e. get("generic.class")
may fail), but they will be
accessible by getS3method("generic","class")
.
Any object can have a class
attribute. This attribute can have any
number of elements. Each of these is a string that defines a class. When a
generic function is invoked the class of its first argument is examined.
UseMethod
is a special function and it behaves differently from other
function calls. The syntax of a call to it is
UseMethod(generic, object)
, where generic is the
name of the generic function, object is the object used to determine
which method should be chosen. UseMethod
can only be called from the
body of a function.
UseMethod
changes the evaluation model in two ways. First, when it
is invoked it determines the next method (function) to be called. It then
invokes that function using the current evaluation
environment; this process will be described shortly. The second way in
which UseMethod
changes the evaluation environment is that it does
not return control to the calling function. This means, that any statements
after a call to UseMethod
are guaranteed not to be executed.
When UseMethod
is invoked the generic function is the specified value
in the call to UseMethod
. The object to dispatch on is either the
supplied second argument or the first argument to the current function. The
class of the argument is determined and the first element of it is combined
with the name of the generic to determine the appropriate method. So, if
the generic had name foo
and the class of the object is "bar"
,
then R will search for a method named foo.bar
. If no such method
exists then the inheritance mechanism described above is used to locate an
appropriate method.
Once a method has been determined R invokes it in a special way. Rather
than creating a new evaluation
environment R uses the environment of the current function call (the call
to the generic). Any
assignments or evaluations that were made before the call to
UseMethod
will be in effect. The arguments that were used in the
call to the generic are rematched to the formal arguments of the selected
method.
When the method is invoked it is called with arguments that are the same in number and have the same names as in the call to the generic. They are matched to the arguments of the method according to the standard R rules for argument matching. However the object, i.e. the first argument has been evaluated.
The call to UseMethod
has the effect of placing some special objects
in the evaluation frame. They are .Class
, .Generic
and
.Method
. These special objects are used to by R to handle the
method dispatch and inheritance. .Class
is the class of the object,
.Generic
is the name of the generic function and .Method
is
the name of the method currently being invoked. If the method was invoked
through one of the internal interfaces then there may also be an object
called .Group
. This will be described in Section Group methods. After the initial call to UseMethod
these special
variables, not the object itself, control the selection of subsequent
methods.
The body of the method is then evaluated in the standard fashion. In
particular variable look-up in the body follows the rules for the method.
So if the method has an associated environment then that is used. In effect
we have replaced the call to the generic by a call to the method. Any local
assignments in the frame of the generic will be carried forward into the
call to the method. Use of this feature is discouraged. It is
important to realize that control will never return to the generic and hence
any expressions after a call to UseMethod
will never be executed.
Any arguments to the generic that were evaluated prior to the call to
UseMethod
remain evaluated.
If the first argument to UseMethod
is not supplied it is assumed to
be the name of the current function. If two arguments are supplied to
UseMethod
then the first is the name of the method and the second is
assumed to be the object that will be dispatched on. It is evaluated so
that the required method can be determined. In this case the first argument
in the call to the generic is not evaluated and is discarded. There is no
way to change the other arguments in the call to the method; these remain as
they were in the call to the generic. This is in contrast to
NextMethod
where the arguments in the call to the next method can be
altered.
NextMethod
is used to provide a simple inheritance mechanism.
Methods invoked as a result of a call to NextMethod
behave as if they
had been invoked from the previous method. The arguments to the inherited
method are in the same order and have the same names as the call to the
current method. This means that they are the same as for the call to the
generic. However, the expressions for the arguments are the names of the
corresponding formal arguments of the current method. Thus the arguments
will have values that correspond to their value at the time NextMethod was
invoked.
Unevaluated arguments remain unevaluated. Missing arguments remain missing.
The syntax for a call to NextMethod
is NextMethod(generic,
object, ...)
. If the generic
is not supplied the value of
.Generic
is used. If the object
is not supplied the first
argument in the call to the current method is used. Values in the
‘...’ argument are used to modify the arguments of the next method.
It is important to realize that the choice of the next method depends on the
current values of .Generic
and .Class
and not on the object.
So changing the object in a call to NextMethod
affects the arguments
received by the next method but does not affect the choice of the next
method.
Methods can be called directly. If they are then there will be no
.Generic
, .Class
or .Method
. In this case the
generic
argument of NextMethod
must be specified. The value
of .Class
is taken to be the class attribute of the object which is
the first argument to the current function. The value of .Method
is
the name of the current function. These choices for default values ensure
that the behaviour of a method doesn’t change depending on whether it is
called directly or via a call to a generic.
An issue for discussion is the behaviour of the ‘...’ argument to
NextMethod
. The White Book describes the behaviour as follows:
- named arguments replace the corresponding arguments in the call to the current method. Unnamed arguments go at the start of the argument list.
What I would like to do is:
-first do the argument matching for NextMethod; -if the object or generic are changed fine -first if a named list element matches an argument (named or not) the list value replaces the argument value. - the first unnamed list element
Values for lookup: Class: comes first from .Class, second from the first argument to the method and last from the object specified in the call to NextMethod
Generic: comes first from .Generic, if nothing then from the first argument to the method and if it’s still missing from the call to NextMethod
Method: this should just be the current function name.
For several types of
internal functions R provides a dispatching mechanism for operators.
This means that operators such as ==
or <
can have their
behaviour modified for members of special classes. The functions and
operators have been grouped into three categories and group methods can be
written for each of these categories. There is currently no mechanism to
add groups. It is possible to write methods specific to any function within
a group.
The following table lists the functions for the different Groups.
abs, acos, acosh, asin, asinh, atan, atanh, ceiling, cos, cosh, cospi, cumsum, exp, floor, gamma, lgamma, log, log10, round, signif, sin, sinh, sinpi, tan, tanh, tanpi, trunc
all, any, max, min, prod, range, sum
+
, -
, *
, /
, ^
, <
, >
,
<=
, >=
, !=
, ==
, %%
, %/%
, &
,
|
, !
For operators in the Ops group a special method is invoked if the two operands taken together suggest a single method. Specifically, if both operands correspond to the same method or if one operand corresponds to a method that takes precedence over that of the other operand. If they do not suggest a single method then the default method is used. Either a group method or a class method dominates if the other operand has no corresponding method. A class method dominates a group method.
When the group is Ops the special variable .Method
is a string vector
with two elements. The elements of .Method
are set to the name of
the method if the corresponding argument is a member of the class that was
used to determine the method. Otherwise the corresponding element of
.Method
is set to the zero length string, ""
.
Users can easily write their own methods and generic functions. A
generic function is simply a function with a call to UseMethod
. A
method is simply a function that has been invoked via method dispatch. This
can be as a result of a call to either UseMethod
or
NextMethod
.
It is worth remembering that methods can be called directly. That means
that they can be entered without a call to UseMethod
having been made
and hence the special variables .Generic
, .Class
and
.Method
will not have been instantiated. In that case the default
rules detailed above will be used to determine these.
The most common use of
generic functions is to provide print
and summary
methods for
statistical objects, generally the output of some model fitting process. To
do this, each model attaches a class attribute to its output and then
provides a special method that takes that output and provides a nice
readable version of it. The user then needs only remember that print
or summary
will provide nice output for the results of any analysis.
R belongs to a class of programming languages in which subroutines have the ability to modify or construct other subroutines and evaluate the result as an integral part of the language itself. This is similar to Lisp and Scheme and other languages of the “functional programming” variety, but in contrast to FORTRAN and the ALGOL family. The Lisp family takes this feature to the extreme by the “everything is a list” paradigm in which there is no distinction between programs and data.
R presents a friendlier interface to programming than Lisp does, at least to someone used to mathematical formulas and C-like control structures, but the engine is really very Lisp-like. R allows direct access to parsed expressions and functions and allows you to alter and subsequently execute them, or create entirely new functions from scratch.
There is a number of standard applications of this facility, such as
calculation of analytical derivatives of expressions, or the generation of
polynomial functions from a vector of coefficients. However, there are also
uses that are much more fundamental to the workings of the interpreted part
of R. Some of these are essential to the reuse of functions as
components in other functions, as the (admittedly not very pretty) calls to
model.frame
that are constructed in several modeling and plotting
routines. Other uses simply allow elegant interfaces to useful
functionality. As an example, consider the curve
function, which
allows you to draw the graph of a function given as an expression like
sin(x)
or the facilities for plotting mathematical expressions.
In this chapter, we give an introduction to the set of facilities that are available for computing on the language.
There are three kinds of language objects that are available for
modification, calls, expressions, and functions. At this point, we shall
concentrate on the call objects. These are sometimes referred to as
“unevaluated expressions”, although this terminology is somewhat
confusing. The most direct method of obtaining a call object is to use
quote
with an expression argument, e.g.,
> e1 <- quote(2 + 2) > e2 <- quote(plot(x, y))
The arguments are not evaluated, the result is simply the parsed argument.
The objects e1
and e2
may be evaluated later using
eval
, or simply manipulated as data. It is perhaps most immediately
obvious why the e2
object has mode "call"
, since it involves a
call to the plot
function with some arguments. However, e1
actually has exactly the same structure as a call to the binary operator
+
with two arguments, a fact that gets clearly displayed by the
following
> quote("+"(2, 2)) 2 + 2
The components of a call object are accessed using a list-like syntax, and
may in fact be converted to and from lists using as.list
and
as.call
> e2[[1]] plot > e2[[2]] x > e2[[3]] y
When keyword argument matching is used, the keywords can be used as list tags:
> e3 <- quote(plot(x = age, y = weight)) > e3$x age > e3$y weight
All the components of the call object have mode "name"
in the
preceding examples. This is true for identifiers in calls, but the
components of a call can also be constants—which can be of any type,
although the first component had better be a function if the call is to be
evaluated successfully—or other call objects, corresponding to
subexpressions. Objects of mode
name can be constructed from character strings using as.name
, so one
might modify the e2
object as follows
> e2[[1]] <- as.name("+") > e2 x + y
To illustrate the fact that subexpressions are simply components that are themselves calls, consider
> e1[[2]] <- e2 > e1 x + y + 2
All grouping parentheses in input are preserved in parsed expressions. They
are represented as a function call with one argument, so that 4 - (2 -
2)
becomes "-"(4, "(" ("-"(2, 2)))
in prefix notation. In
evaluations, the ‘(’ operator just returns its argument.
This is a bit unfortunate, but it is not easy to write a parser/deparser combination that both preserves user input, stores it in minimal form and ensures that parsing a deparsed expression gives the same expression back.
As it happens, R’s parser is not perfectly invertible, nor is its deparser, as the following examples show
> str(quote(c(1,2))) language c(1, 2) > str(c(1,2)) num [1:2] 1 2 > deparse(quote(c(1,2))) [1] "c(1, 2)" > deparse(c(1,2)) [1] "c(1, 2)" > quote("-"(2, 2)) 2 - 2 > quote(2 - 2) 2 - 2
Deparsed expressions should, however, evaluate to an equivalent value to the original expression (up to rounding error).
...internal storage of flow control constructs...note Splus incompatibility...
It is in fact not often that one wants to modify the innards of an
expression like in the previous section. More frequently, one wants to
simply get at an expression in order to deparse it and use it for labeling
plots, for instance. An example of this is seen at the beginning of
plot.default
:
xlabel <- if (!missing(x)) deparse(substitute(x))
This causes the variable or expression given as the x
argument to
plot
to be used for labeling the x-axis later on.
The function used to achieve this is substitute
which takes the
expression x
and substitutes the expression that was passed through
the formal argument x
. Notice that for this to happen, x
must
carry information about the expression that creates its value. This is
related to the
lazy evaluation scheme of R (see Promise objects). A formal argument
is really a promise, an object with three slots, one for the
expression that defines it, one for the environment in which to evaluate
that expression, and one for the value of that expression once
evaluated. substitute
will recognize a promise variable and
substitute the value of its expression slot. If substitute
is
invoked inside a function, the local variables of the function are also
subject to substitution.
The argument to substitute
does not have to be a simple identifier,
it can be an expression involving several variables and substitution will
occur for each of these. Also, substitute
has an additional argument
which can be an environment or a list in which the variables are looked up.
For example:
> substitute(a + b, list(a = 1, b = quote(x))) 1 + x
Notice that quoting was necessary to substitute the x
. This kind of
construction comes in handy in connection with the facilities for putting
math expression in graphs, as the following case shows
> plot(0) > for (i in 1:4) + text(1, 0.2 * i, + substitute(x[ix] == y, list(ix = i, y = pnorm(i))))
It is important to realize that the substitutions are purely lexical; there
is no checking that the resulting call objects make sense if they are
evaluated. substitute(x <- x + 1, list(x = 2))
will happily return
2 <- 2 + 1
. However, some parts of R make up their own rules for
what makes sense and what does not and might actually have a use for such
ill-formed expressions. For example, using the “math in graphs” feature
often involves constructions that are syntactically correct, but which would
be meaningless to evaluate, like ‘{}>=40*" years"’.
Substitute will not evaluate its first argument. This leads to the puzzle
of how to do substitutions on an object that is contained in a variable.
The solution is to use substitute
once more, like this
> expr <- quote(x + y) > substitute(substitute(e, list(x = 3)), list(e = expr)) substitute(x + y, list(x = 3)) > eval(substitute(substitute(e, list(x = 3)), list(e = expr))) 3 + y
The exact rules for substitutions are as follows: Each
symbol in the
parse tree for the first is matched against the second argument, which can
be a tagged list or an environment frame. If it is a simple local object,
its value is inserted, except if matching against the global
environment. If it is a promise (usually a function argument), the promise
expression is substituted. If the symbol is not matched, it is left
untouched. The special exception for substituting at the top level is
admittedly peculiar. It has been inherited from S and the rationale is
most likely that there is no control over which variables might be bound at
that level so that it would be better to just make substitute act as
quote
.
The rule of promise substitution is slightly different from that of S if
the local variable is modified before substitute
is used. R will
then use the new value of the variable, whereas S will unconditionally
use the argument expression—unless it was a constant, which has the
curious consequence that f((1))
may be very different from
f(1)
in S. The R rule is considerably cleaner, although it
does have consequences in connection with
lazy evaluation that comes as a surprise to some. Consider
logplot <- function(y, ylab = deparse(substitute(y))) { y <- log(y) plot(y, ylab = ylab) }
This looks straightforward, but one will discover that the y label becomes
an ugly c(...)
expression. It happens because the rules of lazy
evaluation cause the evaluation of the ylab
expression to happen
after y
has been modified. The solution is to force
ylab
to be evaluated first, i.e.,
logplot <- function(y, ylab = deparse(substitute(y))) { ylab y <- log(y) plot(y, ylab = ylab) }
Notice that one should not use eval(ylab)
in this situation. If
ylab
is a language or expression object, then that would cause the
object to be evaluated as well, which would not at all be desirable if a
math expression like quote(log[e](y))
was being passed.
A variant on substitute
is bquote
, which is used to replace
some subexpressions with their values. The example from above
> plot(0) > for (i in 1:4) + text(1, 0.2 * i, + substitute(x[ix] == y, list(ix = i, y = pnorm(i))))
could be written more compactly as
plot(0) for(i in 1:4) text(1, 0.2*i, bquote( x[.(i)] == .(pnorm(i)) ))
The expression is quoted except for the contents of .()
subexpressions, which are replaced with their values. There is an optional
argument to compute the values in a different environment. The syntax for
bquote
is borrowed from the LISP backquote macro.
The eval
function was introduced earlier in this chapter as a means
of evaluating call objects. However, this is not the full story. It is
also possible to specify the
environment in which the evaluation is to take place. By default this is the
evaluation frame from which eval
is called, but quite frequently it
needs to be set to something else.
Very often, the relevant evaluation frame is that of the parent of the
current frame (cf. ???). In particular, when the object to evaluate is
the result of a substitute
operation of the function arguments, it
will contain variables that make sense to the caller only (notice that there
is no reason to expect that the variables of the caller are in the
lexical scope of the callee). Since evaluation in the parent frame occurs
frequently, an eval.parent
function exists as a shorthand for
eval(expr, sys.frame(sys.parent()))
.
Another case that occurs frequently is evaluation in a list or a data
frame. For instance, this happens in connection with the model.frame
function when a data
argument is given. Generally, the terms of the
model formula need to be evaluated in data
, but they may occasionally
also contain references to items in the caller of model.frame
. This
is sometimes useful in connection with simulation studies. So for this
purpose one needs not only to evaluate an expression in a list, but also to
specify an enclosure into which the search continues if the variable is not
in the list. Hence, the call has the form
eval(expr, data, sys.frame(sys.parent()))
Notice that evaluation in a given environment may actually change that environment, most obviously in cases involving the assignment operator, such as
eval(quote(total <- 0), environment(robert$balance)) # rob Rob
This is also true when evaluating in lists, but the original list does not change because one is really working on a copy.
Objects of mode "expression"
are defined in Expression objects. They are very similar to lists of call objects.
> ex <- expression(2 + 2, 3 + 4) > ex[[1]] 2 + 2 > ex[[2]] 3 + 4 > eval(ex) [1] 7
Notice that evaluating an expression object evaluates each call in turn, but
the final value is that of the last call. In this respect it behaves almost
identically to the compound language object quote({2 + 2; 3 + 4})
.
However, there is a subtle difference: Call objects are indistinguishable
from subexpressions in a parse tree. This means that they are automatically
evaluated in the same way a subexpression would be. Expression objects can
be recognized during evaluation and in a sense retain their quotedness. The
evaluator will not evaluate an expression object recursively, only when it
is passed directly to eval
function as above. The difference can be
seen like this:
> eval(substitute(mode(x), list(x = quote(2 + 2)))) [1] "numeric" > eval(substitute(mode(x), list(x = expression(2 + 2)))) [1] "expression"
The deparser represents an expression object by the call that creates it. This is similar to the way it handles numerical vectors and several other objects that do not have a specific external representation. However, it does lead to the following bit of confusion:
> e <- quote(expression(2 + 2)) > e expression(2 + 2) > mode(e) [1] "call" > ee <- expression(2 + 2) > ee expression(2 + 2) > mode(ee) [1] "expression"
I.e., e
and ee
look identical when printed, but one is a call
that generates an expression object and the other is the object itself.
It is possible for a
function to find out how it has been called by looking at the result of
sys.call
as in the following example of a function that simply
returns its own call:
> f <- function(x, y, ...) sys.call() > f(y = 1, 2, z = 3, 4) f(y = 1, 2, z = 3, 4)
However, this is not really useful except for debugging because it requires
the function to keep track of argument matching in order to interpret the
call. For instance, it must be able to see that the 2nd actual argument
gets matched to the first formal one (x
in the above example).
More often one requires the call with all actual arguments bound to the
corresponding formals. To this end, the function match.call
is
used. Here’s a variant of the preceding example, a function that returns
its own call with arguments matched
> f <- function(x, y, ...) match.call() > f(y = 1, 2, z = 3, 4) f(x = 2, y = 1, z = 3, 4)
Notice that the second argument now gets matched to x
and appears in
the corresponding position in the result.
The primary use of this technique is to call another function with the same
arguments, possibly deleting some and adding others. A typical application
is seen at the start of the lm
function:
mf <- cl <- match.call() mf$singular.ok <- mf$model <- mf$method <- NULL mf$x <- mf$y <- mf$qr <- mf$contrasts <- NULL mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") mf <- eval(mf, sys.frame(sys.parent()))
Notice that the resulting call is
evaluated in the parent frame, in which one can be certain that the involved
expressions make sense. The call can be treated as a list object where the
first element is the name of the function and the remaining elements are the
actual argument expressions, with the corresponding formal argument names as
tags. Thus, the technique to eliminate undesired arguments is to assign
NULL
, as seen in lines 2 and 3, and to add an argument one uses
tagged list
assignment (here to pass drop.unused.levels = TRUE
) as in line 4.
To change the name of the function called, assign to the first element of
the list and make sure that the value is a name, either using the
as.name("model.frame")
construction here or
quote(model.frame)
.
The match.call
function has an expand.dots
argument which is a
switch which if set to FALSE
lets all ‘...’ arguments be
collected as a single argument with the tag ‘...’.
> f <- function(x, y, ...) match.call(expand.dots = FALSE) > f(y = 1, 2, z = 3, 4) f(x = 2, y = 1, ... = list(z = 3, 4))
The ‘...’ argument is a list (a pairlist to be precise), not a call to
list
like it is in S:
> e1 <- f(y = 1, 2, z = 3, 4)$... > e1 $z [1] 3 [[2]] [1] 4
One reason for using this form of match.call
is simply to get rid of
any ‘...’ arguments in order not to be passing unspecified arguments on
to functions that may not know them. Here’s an example paraphrased from
plot.formula
:
m <- match.call(expand.dots = FALSE) m$... <- NULL m[[1]] <- "model.frame"
A more elaborate application is in update.default
where a set of
optional extra arguments can add to, replace, or cancel those of the
original call:
extras <- match.call(expand.dots = FALSE)$... if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } }
Notice that care is taken to modify existing arguments individually in case
extras[[a]] == NULL
. Concatenation does not work on call objects
without the coercion as shown; this is arguably a bug.
Two further functions exist for the construction of function calls, namely
call
and do.call
.
The function call
allows creation of a call object from the function
name and the list of arguments
> x <- 10.5 > call("round", x) round(10.5)
As seen, the value of x
rather than the
symbol is inserted in the call, so it is distinctly different from
round(x)
. The form is used rather rarely, but is occasionally useful
where the name of a function is available as a character variable.
The function do.call
is related, but evaluates the call immediately
and takes the arguments from an object of mode "list"
containing all
the arguments. A natural use of this is when one wants to apply a function
like cbind
to all elements of a list or data frame.
is.na.data.frame <- function (x) { y <- do.call("cbind", lapply(x, "is.na")) rownames(y) <- row.names(x) y }
Other uses include variations over constructions like do.call("f",
list(...))
. However, one should be aware that this involves evaluation of
the arguments before the actual function call, which may defeat aspects of
lazy evaluation and argument substitution in the function itself. A similar
remark applies to the call
function.
It is often useful to be able to manipulate the components of a function or closure. R provides a set of interface functions for this purpose.
body
Returns the expression that is the body of the function.
formals
Returns a list of the formal arguments to the function. This is a
pairlist
.
environment
Returns the environment associated with the function.
body<-
This sets the body of the function to the supplied expression.
formals<-
Sets the formal arguments of the function to the supplied list.
environment<-
Sets the environment of the function to the specified environment.
It is also possible to alter the bindings of different variables in the
environment of the function, using code along the lines of evalq(x <-
5, environment(f))
.
It is also possible to convert a
function to a list using as.list
. The result is the concatenation of
the list of formal arguments with the function body. Conversely such a list
can be converted to a function using as.function
. This functionality
is mainly included for S compatibility. Notice that environment
information is lost when as.list
is used, whereas as.function
has an argument that allows the environment to be set.
Access to the operating system shell is via the R function system
.
The details will differ by platform (see the on-line help), and about all
that can safely be assumed is that the first argument will be a string
command
that will be passed for execution (not necessarily by a
shell) and the second argument will be internal
which if true will
collect the output of the command into an R character vector.
The functions system.time
and proc.time
are available for timing (although the information available may be limited
on non-Unix-like platforms).
Information from the operating system environment can be accessed and manipulated with
Sys.getenv
OS environment variables Sys.putenv
Sys.getlocale
System locale Sys.putlocale
Sys.localeconv
Sys.time
Current time Sys.timezone
Time zone
A uniform set of file access functions is provided on all platforms:
There are also functions for manipulating file names and paths in a platform-independent way.
basename
File name without directory dirname
Directory name file.path
Construct path to file path.expand
Expand ~
in Unix path
See System and foreign language interfaces in Writing R Extensions for the details of adding functionality to R via compiled code.
Functions .C
and .Fortran
provide a standard interface to
compiled code that has been linked into R, either at build time or via
dyn.load
. They are primarily intended for compiled C and FORTRAN
code respectively, but the .C
function can be used with other
languages which can generate C interfaces, for example C++.
Functions .Call
and .External
provide interfaces which allow
compiled code (primarily compiled C code) to manipulate R objects.
The .Internal
and .Primitive
interfaces are used to call C
code compiled into R at build time. See .Internal vs .Primitive in R Internals.
The exception handling facilities in R are provided through two
mechanisms. Functions such as stop
or warning
can be called
directly or options such as "warn"
can be used to control the
handling of problems.
A call to stop
halts the evaluation of the current expression, prints
the message argument and returns execution to top-level.
The function warning
takes a single argument that is a character
string. The behaviour of a call to warning
depends on the value of
the option "warn"
. If "warn"
is negative warnings are
ignored. If it is zero, they are stored and printed after the top-level
function has completed. If it is one, they are printed as they occur and if
it is 2 (or larger) warnings are turned into errors.
If "warn"
is zero (the default), a variable last.warning
is
created and the messages associated with each call to warning
are
stored, sequentially, in this vector. If there are fewer than 10 warnings
they are printed after the function has finished evaluating. If there are
more than 10 then a message indicating how many warnings occurred is
printed. In either case last.warning
contains the vector of
messages, and warnings
provides a way to access and print it.
A function can insert a call to on.exit
at any point in the body of a
function. The effect of a call to on.exit
is to store the value of
the body so that it will be executed when the function exits. This allows
the function to change some system parameters and to ensure that they are
reset to appropriate values when the function is finished. The
on.exit
is guaranteed to be executed when the function exits either
directly or as the result of a warning.
An error in the evaluation of the on.exit
code causes an immediate
jump to top-level without further processing of the on.exit
code.
on.exit
takes a single argument which is an expression to be
evaluated when the function is exited.
There are a number of options
variables that can be used to control
how R handles errors and warnings. They are listed in the table below.
Controls the printing of warnings.
Sets an expression that is to be evaluated when a warning occurs. The normal printing of warnings is suppressed if this option is set.
Installs an expression that will be evaluated when an error occurs. The normal printing of error messages and warning messages precedes the evaluation of the expression.
Expressions installed by options("error")
are evaluated before calls
to on.exit
are carried out.
One can use options(error = expression(q("yes")))
to get R to quit
when an error has been signalled. In this case an error will cause R to
shut down and the global environment will be saved.
Debugging code has always been a bit of an art. R provides several tools that help users find problems in their code. These tools halt execution at particular points in the code and the current state of the computation can be inspected.
Most debugging takes place either through calls to browser
or
debug
. Both of these functions rely on the same internal mechanism
and both provide the user with a special prompt. Any command can be typed
at the prompt. The evaluation
environment for the command is the currently active environment. This
allows you to examine the current state of any variables etc.
There are five special commands that R interprets differently. They are,
Go to the next statement if the function is being debugged. Continue execution if the browser was invoked.
Continue the execution.
Execute the next statement in the function. This works from the browser as well.
Show the call stack
Halt execution and jump to the top-level immediately.
If there is a local variable with the same name as one of the special
commands listed above then its value can be accessed by using get
. A
call to get
with the name in quotes will retrieve the value in the
current
environment.
The debugger provides access only to interpreted expressions. If a function
calls a foreign language (such as C) then no access to the statements in
that language is provided. Execution will halt on the next statement that
is evaluated in R. A symbolic debugger such as gdb
can be used to
debug compiled code.
A call to the function browser
causes R to halt execution at that
point and to provide the user with a special prompt. Arguments to
browser
are ignored.
> foo <- function(s) { + c <- 3 + browser() + } > foo(4) Called from: foo(4) Browse[1]> s [1] 4 Browse[1]> get("c") [1] 3 Browse[1]>
The debugger can be invoked on any function by using the command
debug(fun)
. Subsequently, each time that function is evaluated
the debugger is invoked. The debugger allows you to control the evaluation
of the statements in the body of the function. Before each statement is
executed the statement is printed out and a special prompt provided. Any
command can be given, those in the table above have special meaning.
Debugging is turned off by a call to undebug
with the function as an
argument.
> debug(mean.default) > mean(1:10) debugging in: mean.default(1:10) debug: { if (na.rm) x <- x[!is.na(x)] trim <- trim[1] n <- length(c(x, recursive = TRUE)) if (trim > 0) { if (trim >= 0.5) return(median(x, na.rm = FALSE)) lo <- floor(n * trim) + 1 hi <- n + 1 - lo x <- sort(x, partial = unique(c(lo, hi)))[lo:hi] n <- hi - lo + 1 } sum(x)/n } Browse[1]> debug: if (na.rm) x <- x[!is.na(x)] Browse[1]> debug: trim <- trim[1] Browse[1]> debug: n <- length(c(x, recursive = TRUE)) Browse[1]> c exiting from: mean.default(1:10) [1] 5.5
Another way of monitoring the behaviour of R is through the trace
mechanism. trace
is called with a single argument that is the name
of the function you want to trace. The name does not need to be quoted but
for some functions you will need to quote the name in order to avoid a
syntax error.
When trace
has been invoked on a function then every time that
function is evaluated the call to it is printed out. This mechanism is
removed by calling untrace
with the function as an argument.
> trace("[<-") > x <- 1:10 > x[3] <- 4 trace: "[<-"(*tmp*, 3, value = 4)
When an error has caused a jump to top-level a special variable called
.Traceback
is placed into the base environment. .Traceback
is
a character vector with one entry for each function call that was active at
the time the error occurred. An examination of .Traceback
can be
carried out by a call to traceback
.
The parser is what converts the textual representation of R code into an internal form which may then be passed to the R evaluator which causes the specified instructions to be carried out. The internal form is itself an R object and can be saved and otherwise manipulated within the R system.
Parsing in R occurs in three different variants:
The read-eval-print loop forms the basic command line interface to R. Textual input is read until a complete R expression is available. Expressions may be split over several input lines. The primary prompt (by default ‘> ’) indicates that the parser is ready for a new expression, and a continuation prompt (by default ‘+ ’) indicates that the parser expects the remainder of an incomplete expression. The expression is converted to internal form during input and the parsed expression is passed to the evaluator and the result is printed (unless specifically made invisible). If the parser finds itself in a state which is incompatible with the language syntax, a “Syntax Error” is flagged and the parser resets itself and resumes input at the beginning of the next input line.
Text files can be parsed using the parse
function. In particular,
this is done during execution of the source
function, which allows
commands to be stored in an external file and executed as if they had been
typed at the keyboard. Note, though, that the entire file is parsed and
syntax checked before any evaluation takes place.
Character strings, or vectors thereof, can be parsed using the text=
argument to parse
. The strings are treated exactly as if they were
the lines of an input file.
Parsed expressions are stored in an R object containing the parse tree.
A fuller description of such objects can be found in Language objects
and Expression objects. Briefly, every elementary R expression is
stored in
function call form, as a list with the first element containing the function
name and the remainder containing the arguments, which may in turn be
further R expressions. The list elements can be named, corresponding to
tagged matching of formal and actual arguments. Note that all R
syntax elements are treated in this way, e.g. the assignment x <- 1
is encoded as "<-"(x, 1)
.
Any R object can be converted to an R expression using
deparse
. This is frequently used in connection with output of
results, e.g. for labeling plots. Notice that only objects of mode
"expression"
can be expected to be unchanged by reparsing the output
of deparsing. For instance, the numeric vector 1:5
will deparse as
"c(1, 2, 3, 4, 5)"
, which will reparse as a call to the function
c
. As far as possible, evaluating the deparsed and reparsed
expression gives the same result as evaluating the original, but there are a
couple of awkward exceptions, mostly involving expressions that weren’t
generated from a textual representation in the first place.
Comments in R are ignored by the parser. Any text from a
#
character to the end of the line is taken to be a comment, unless
the #
character is inside a quoted string. For example,
> x <- 1 # This is a comment... > y <- " #... but this is not."
Tokens are the elementary building blocks of a programming language. They are recognised during lexical analysis which (conceptually, at least) takes place prior to the syntactic analysis performed by the parser itself.
There are five types of constants: integer, logical, numeric, complex and string.
In addition, there are four special constants, NULL
, NA
,
Inf
, and NaN
.
NULL
is used to indicate the empty object. NA
is used for
absent (“Not Available”) data values. Inf
denotes infinity and
NaN
is not-a-number in the IEEE floating point calculus
(results of the operations respectively 1/0 and 0/0, for
instance).
Logical constants are either TRUE
or FALSE
.
Numeric constants follow a similar syntax to that of the C language. They consist of an integer part consisting of zero or more digits, followed optionally by ‘.’ and a fractional part of zero or more digits optionally followed by an exponent part consisting of an ‘E’ or an ‘e’, an optional sign and a string of one or more digits. Either the fractional or the decimal part can be empty, but not both at once.
Valid numeric constants: 1 10 0.1 .2 1e-7 1.2e+7
Numeric constants can also be hexadecimal, starting with ‘0x’ or ‘0x’ followed by zero or more digits, ‘a-f’ or ‘A-F’. Hexadecimal floating point constants are supported using C99 syntax, e.g. ‘0x1.1p1’.
There is now a separate class of integer constants. They are created by
using the qualifier L
at the end of the number. For example,
123L
gives an integer value rather than a numeric value. The suffix
L
can be used to qualify any non-complex number with the intent of
creating an integer. So it can be used with numbers given by hexadecimal or
scientific notation. However, if the value is not a valid integer, a warning
is emitted and the numeric value created. The following shows examples of
valid integer constants, values which will generate a warning and give
numeric constants and syntax errors.
Valid integer constants: 1L, 0x10L, 1000000L, 1e6L Valid numeric constants: 1.1L, 1e-3L, 0x1.1p-2 Syntax error: 12iL 0x1.1
A warning is emitted for decimal values that contain an unnecessary decimal
point, e.g. 1.L
. It is an error to have a decimal point in a
hexadecimal constant without the binary exponent.
Note also that a preceding sign (+
or -
) is treated as a unary
operator, not as part of the constant.
Up-to-date information on the currently accepted formats can be found by
?NumericConstants
.
Complex constants have the form of a decimal numeric constant followed by ‘i’. Notice that only purely imaginary numbers are actual constants, other complex numbers are parsed a unary or binary operations on numeric and imaginary numbers.
Valid complex constants: 2i 4.1i 1e-2i
String constants are delimited by a pair of single (‘'’) or double (‘"’) quotes and can contain all other printable characters. Quotes and other special characters within strings are specified using escape sequences:
\'
single quote
\"
double quote
\n
newline
\r
carriage return
\t
tab character
\b
backspace
\a
bell
\f
form feed
\v
vertical tab
\\
backslash itself
\nnn
character with given octal code – sequences of one, two or three digits in
the range 0 ... 7
are accepted.
\xnn
character with given hex code – sequences of one or two hex digits (with
entries 0 ... 9 A ... F a ... f
).
\unnnn \u{nnnn}
(where multibyte locales are supported, otherwise an error). Unicode character with given hex code – sequences of up to four hex digits. The character needs to be valid in the current locale.
\Unnnnnnnn \U{nnnnnnnn}
(where multibyte locales are supported and not on Windows, otherwise an error). Unicode character with given hex code – sequences of up to eight hex digits.
A single quote may also be embedded directly in a double-quote delimited string and vice versa.
As from R 2.8.0, a ‘nul’ (\0
) is not allowed in a character
string, so using \0
in a string constant terminates the constant
(usually with a warning): further characters up to the closing quote are
scanned but ignored.
Identifiers consist of a sequence of letters, digits, the period (‘.’) and the underscore. They must not start with a digit or an underscore, or with a period followed by a digit.
The definition of a letter depends on the current locale: the precise set of
characters allowed is given by the C expression (isalnum(c) || c ==
'.' || c == '_')
and will include accented letters in many Western European
locales.
Notice that identifiers starting with a period are not by default listed by
the ls
function and that ‘...’ and ‘..1’, ‘..2’,
etc. are special.
Notice also that objects can have names that are not identifiers. These are
generally accessed via get
and assign
, although they can also
be represented by text strings in some limited circumstances when there is
no ambiguity (e.g. "x" <- 1
). As get
and assign
are
not restricted to names that are identifiers they do not recognise
subscripting operators or replacement functions. The following pairs are
not equivalent
x$a<-1
assign("x$a",1)
x[[1]]
get("x[[1]]")
names(x)<-nm
assign("names(x)",nm)
The following identifiers have a special meaning and cannot be used for object names
if else repeat while function for in next break
TRUE FALSE NULL Inf NaN
NA NA_integer_ NA_real_ NA_complex_ NA_character_
... ..1 ..2 etc.
R allows user-defined infix operators. These have the form of a string of characters delimited by the ‘%’ character. The string can contain any printable character except ‘%’. The escape sequences for strings do not apply here.
Note that the following operators are predefined
%% %*% %/% %in% %o% %x%
Although not strictly tokens, stretches of whitespace characters (spaces,
tabs and formfeeds, on Windows and UTF-8 locales other Unicode whitespace
characters1) serve to delimit tokens in case of
ambiguity, (compare x<-5
and x < -5
).
Newlines have a function which is a combination of token separator and expression terminator. If an expression can terminate at the end of the line the parser will assume it does so, otherwise the newline is treated as whitespace. Semicolons (‘;’) may be used to separate elementary expressions on the same line.
Special rules apply to the else
keyword: inside a compound
expression, a newline before else
is discarded, whereas at the
outermost level, the newline terminates the if
construction and a
subsequent else
causes a syntax error. This somewhat anomalous
behaviour occurs because R should be usable in interactive mode and then
it must decide whether the input expression is complete, incomplete, or
invalid as soon as the user presses RET.
The comma (‘,’) is used to separate function arguments and multiple indices.
R uses the following operator tokens
+ - * / %% ^
arithmetic > >= < <= == !=
relational ! & |
logical ~
model formulae -> <-
assignment $
list indexing :
sequence
(Several of the operators have different meaning inside model formulas)
Ordinary parentheses—‘(’ and ‘)’—are used for explicit grouping within expressions and to delimit the argument lists for function definitions and function calls.
Braces—‘{’ and ‘}’—delimit blocks of expressions in function definitions, conditional expressions, and iterative constructs.
Indexing of arrays and vectors is performed using the single and double brackets, ‘[]’ and ‘[[]]’. Also, indexing tagged lists may be done using the ‘$’ operator.
An R program consists of a sequence of R expressions. An expression can be a simple expression consisting of only a constant or an identifier, or it can be a compound expression constructed from other parts (which may themselves be expressions).
The following sections detail the various syntactical constructs that are available.
A function call takes the form of a function reference followed by a comma-separated list of arguments within a set of parentheses.
function_reference ( arg1, arg2, ...... , argn )
The function reference can be either
Each argument can be tagged (tag=expr
), or just be a
simple expression. It can also be empty or it can be one of the special
tokens ‘...’, ‘..2’, etc.
A tag can be an identifier or a text string.
Examples:
f(x) g(tag = value, , 5) "odd name"("strange tag" = 5, y) (function(x) x^2)(5)
The order of precedence (highest first) of the operators is
:: $ @ ^ - + (unary) : %xyz% * / + - (binary) > >= < <= == != ! & && | || ~ (unary and binary) -> ->> = (as assignment) <- <<-
Note that :
precedes binary +/-, but not ^
. Hence,
1:3-1
is 0 1 2, but 1:2^3
is 1:8
.
The exponentiation operator ‘^’ and the
left assignment plus minus operators ‘<- - = <<-’ group right to left,
all other operators group left to right. That is, 2 ^ 2 ^ 3
is
2 ^ 8, not 4 ^ 3, whereas 1 - 1 - 1
is -1, not
1.
Notice that the operators %%
and %/%
for integer remainder and
divide have higher precedence than multiply and divide.
Although it is not strictly an operator, it also needs mentioning that the ‘=’ sign is used for tagging arguments in function calls and for assigning default values in function definitions.
The ‘$’ sign is in some sense an operator, but does not allow arbitrary right hand sides and is discussed under Index constructions. It has higher precedence than any of the other operators.
The parsed form of a unary or binary operation is completely equivalent to a function call with the operator as the function name and the operands as the function arguments.
Parentheses are recorded as equivalent to a unary operator, with name
"("
, even in cases where the parentheses could be inferred from
operator precedence (e.g., a * (b + c)
).
Notice that the
assignment symbols are operators just like the arithmetic, relational, and
logical ones. Any expression is allowed also on the target side of an
assignment, as far as the parser is concerned (2 + 2 <- 5
is a valid
expression as far as the parser is concerned. The evaluator will object,
though). Similar comments apply to the model formula operator.
R has three indexing constructs, two of which are syntactically similar although with somewhat different semantics:
object [ arg1, ...... , argn ] object [[ arg1, ...... , argn ]]
The object can formally be any valid expression, but it is understood
to denote or evaluate to a subsettable object. The arguments generally
evaluate to numerical or character indices, but other kinds of arguments are
possible (notably drop = FALSE
).
Internally, these index constructs are stored as function calls with
function name "["
respectively "[["
.
The third index construction is
object $ tag
Here, object is as above, whereas tag is an identifier or a text
string. Internally, it is stored as a function call with name "$"
A compound expression is of the form
{ expr1 ; expr2 ; ...... ; exprn }
The semicolons may be replaced by newlines. Internally, this is stored as a
function call with "{"
as the function name and the expressions as
arguments.
R contains the following control structures as special syntactic constructs
if ( cond ) expr if ( cond ) expr1 else expr2 while ( cond ) expr repeat expr for ( var in list ) expr
The expressions in these constructs will typically be compound expressions.
Within the loop constructs (while
, repeat
, for
), one
may use break
(to terminate the loop) and next
(to skip to the
next iteration).
Internally, the constructs are stored as function calls:
"if"(cond, expr) "if"(cond, expr1, expr2) "while"(cond, expr) "repeat"(expr) "for"(var, list, expr) "break"() "next"()
A function definition is of the form
function ( arglist ) body
The function body is an expression, often a compound expression. The arglist is a comma-separated list of items each of which can be an identifier, or of the form ‘identifier = default’, or the special token ‘...’. The default can be any valid expression.
Notice that function arguments unlike list tags, etc., cannot have “strange names” given as text strings.
Internally, a function definition is stored as a function call with function
name function
and two arguments, the arglist and the
body. The arglist is stored as a tagged pairlist where the tags
are the argument names and the values are the default expressions.
The parser currently only supports one directive, #line
. This is
similar to the C-preprocessor directive of the same name. The syntax is
#line nn [ "filename"
]
where nn is an integer line number, and the optional filename (in required double quotes) names the source file.
Unlike the C directive, #line
must appear as the first five
characters on a line. As in C, nn and "filename"
entries may
be separated from it by whitespace. And unlike C, any following text on the
line will be treated as a comment and ignored.
This directive tells the parser that the following line should be assumed to be line nn of file filename. (If the filename is not given, it is assumed to be the same as for the previous directive.) This is not typically used by users, but may be used by preprocessors so that diagnostic messages refer to the original file.
Jump to: | #
$
.
[
A B D E F G I M N O P Q R S T U W |
---|
Jump to: | #
$
.
[
A B D E F G I M N O P Q R S T U W |
---|
Jump to: | #
.
A B C E F I M N O P S T V |
---|
Jump to: | #
.
A B C E F I M N O P S T V |
---|
Richard A. Becker, John M. Chambers and Allan R. Wilks (1988), The New S Language. Chapman & Hall, New York. This book is often called the “Blue Book”.